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A pulsed cooling scheme for optomechanical systems is presented that is capable of cooling at much

faster rates, shorter overall cooling times, and for a wider set of experimental scenarios than is possible by

conventional methods. The proposed scheme can be implemented for both strongly and weakly coupled

optomechanical systems in both weakly and highly dissipative cavities. We study analytically its under-

lying working mechanism, which is based on interferometric control of optomechanical interactions, and

we demonstrate its efficiency with pulse sequences that are obtained by using methods from optimal

control. The short time in which our scheme approaches the optomechanical ground state allows for a

significant relaxation of current experimental constraints. Finally, the framework presented here can be

used to create a rich variety of optomechanical interactions and hence offers a novel, readily available

toolbox for fast optomechanical quantum control.
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Introduction.—Micro- and nanomechanical resonators
are currently emerging as new quantum systems [1].
Their integrability in a solid-state architecture offers
attractive opportunities for quantum information objectives
such as mechanical quantum registers [2,3], optomechan-
ical quantum transducers [4], or quantum memories [5]. At
the same time, their size and mass promise access to a
hitherto untested regime of macroscopic quantum physics
[6–9]. The field of cavity quantum optomechanics [10–13]
utilizes methods from quantum optics in combination with
optomechanical radiation pressure interactions to achieve
this, and experiments are progressing rapidly—the strong
coupling regime has been demonstrated [14–16], and
optomechanical analogues of electromagnetically induced
transparency [17,18] have demonstrated the first steps
towards mechanical storage of light.

A prerequisite to achieve full coherent control over
mechanical quantum states is to operate these systems
close to their quantum ground state and to achieve coup-
ling rates that exceed all other decoherence rates.
Optomechanical cooling close to [16,18–21] and even
well into [22,23] the quantum ground state of micro- and
nanomechanical devices has been realized. However, most
mechanical devices are intrinsically connected to a hot
environment through their supports, which results in large
heating rates. Efficient cooling therefore requires one to
minimize the thermal coupling, either by operating in a
cryogenic environment [19–24] or by decoupling the
mechanical resonator from its environment [25–27].

As a consequence, a cooling scheme that can beat the
mechanical heating rate for systems that are not cryo-
genically cooled or mechanically decoupled from the
environment is highly desirable. For the most widely

used scheme, sideband cooling [28–31], the cooling rate
�, and conversely the time required to approach the ground
state, are inherently limited by the mechanical frequency,
�. Specifically, �< �, due to use of the rotating wave
approximation (RWA). Recently, it was demonstrated in
the context of ion trap physics that pulsed schemes can
break the speed limit set by the oscillator frequency [32],
by using interference between optical pulses incident on
the system that is being cooled. This generates an effective
cooling (red-sideband) term with large couplings, thus
avoiding the RWA limitations. Unfortunately, this ap-
proach cannot be directly used, as the nature of the cavity
coupling is significantly different (generally nonlinear
for the optomechanical system and, when linearized,
harmonic-oscillator-to-harmonic-oscillator coupling vs
harmonic-oscillator-to-spin coupling for trapped ions), as
is the nature of the subsystem from which energy is even-
tually removed (an optical cavity with a wide range of
quality factors vs the ion with a finite Hilbert space and
fixed physical properties). Moreover, one needs to over-
come the instability issue in optomechanical systems,
which does not exist for trapped ions.
In this Letter, we demonstrate how a sequence of fast

pulses adds a term to the effective optomechanical inter-
action Hamiltonian which approximates the cooling (also
known as beam splitter, anti-Stokes, and red-sideband)
operator xmxc þ pmpc / aby þ ayb. Here, a is the annihi-
lation operator of the cavity and xc and pc are its quadrature
operators; b is the annihilation operator of the mechanical
oscillator with corresponding quadratures xm and pm. The
technique is shown to be experimentally feasible in both the
good cavity (� � �) limit, where it is capable of reaching
the ground state much faster than the oscillator frequency,
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and the bad cavity limit (� > �), where sideband cooling is
incapable of approaching the ground state.

Physical setting.—Cavity optomechanical systems are
modeled as an optical cavity field which couples to a
mechanical resonator by way of radiation pressure. The
optical (mechanical) mode, oscillating at a frequency !
(�), is characterized by a relaxation rate � (�m). The
optical mode is driven by a detuned laser field of frequency
!l with a strength �. The corresponding Hamiltonian is

HOM ¼ �ayaþ �bybþ g0
ffiffiffi

2
p ayaðby þ bÞ

þ�ðaye�i� þ aei�Þ; (1)

where � is the initial driving phase, � ¼ !�!l is the
cavity detuning with respect to the laser frequency, and g0
is the optomechanical coupling rate.

Linear approach.—For continuous driving, cooling is
achieved by invoking the RWA. In order to derive a pulse
sequence which generates cooling directly via the cooling
operator introduced above, i.e., without the RWA, we will
need to analyze the dynamics of the system. Assuming, for
now, weak coupling, g0 � �, one may avoid the complex-
ity of the nonlinear nature of the interaction by considering
a linearized approximation of the system.

As this scheme makes use of rapidly changing driving of
the cavity mode, the usual Hamiltonian linearization pro-
cedure [14,28] cannot be trivially applied to Eq. (1).
Rather, we move to a frame comoving with the state of
the cavity, by applying a time-dependent canonical trans-
formation (see the Supplemental Material for additional
details [33]). In this frame, a is redefined as a small
perturbation, allowing us to replace the quadratic coupling
with a linear one. This results in the Hamiltonian

Hlin¼�ayaþ�bybþ ðGðtÞaþG�ðtÞayÞxmþjGðtÞj2xm;
(2)

with GðtÞ ¼ ig0e
�ið��i�Þt Rt

0 �ðt0Þeið��i�Þt0dt0.
The linear nature of the dynamics now allows us to

rephrase the dynamics as an equation of motion of the
covariance matrix [34]. We define a vector of quadrature
operators R � ðxc; pc; xm; pmÞt and the covariance matrix
as �i;j � 2ReðhRiRji � hRiihRjiÞ. The corresponding

equation of motion is d
dt � ¼ M�þ �ðMTÞ þ �

2 P, with

M ¼ SV � �
2 P, where V is the potential matrix (Hlin ¼

RTVR), S the symplectic matrix, and P ¼ diagð1; 1; 0; 0Þ.
Denoting a series of n control pulses (i.e., nmodulations

of the cavity driving laser) fHc1; . . . ; Hcng of corresponding
durations (t1 . . . tn) (with free evolution implicit) and
using the Baker-Campbell-Hausdorff (BCH) [35] equiva-
lency, one may compute the equivalent control

Hamiltonian Hc from eð�i=@ÞtnðH0þHcnÞ ���eð�i=@Þt1ðH0þHc1Þ ¼
eð�i=@Þð�tkÞðH0þHcÞ, where H0 is as in Eq. (2) for G ¼ 0.

The equivalent control Hamiltonian to the control sequ-
ence f�Gxcxm;þGpcxm;�Gpcxm;�Gxcxmg for ðt2; t1;
t1; t2Þ, with � ¼ � (to second order in the BCH series), is

Hc ¼ Gðt21�� 2t2Þxcxm �Gt21�pcpm: (3)

Setting t2 ¼ t21�, the desired�Gt21�ðxcxm þ pcpmÞ cooling
operator is achieved. While higher-order elements in the
BCH series contribute terms undesirable for cooling (e.g.,
squeezing), both analytical estimates and numerical studies
show these disruptions to be well-contained for pulse dura-
tions shorter than the mechanical frequency. Moreover, as
will be shown later, optimal control can further reduce
undesired terms, improving upon sideband cooling with
respect to both the achievable final temperature and the
required time. Finally, it is important to stress that
the BCH operators are a two-edged sword—they create
the cooling operators from commutation relations between
the driving terms and the free Hamiltonian, but, at the same
time, they transform the dissipative elements (Lindblad
terms) in a similar fashion. As a result, stronger driving
enhances both cooling and dissipation terms (modified by
the BCH relations), resulting in a sublinear advantage of
such an approach to further increase cooling rates.
Optimal control.—We have examined the performance

and limits of the proposed cooling sequence using search
methods from optimal control. We took multiple ap-
proaches, including (a) two-stage optimization—initially
optimizing the pulse amplitude and subsequently optimiz-
ing both amplitude and phase, (b) using the analytically
derived sequence in Eq. (3) as an initial point of the
optimization, (c) in the case of strongly dissipating cav-
ities, a ‘‘telescoping’’ series of optimizations is used,
slowly increasing dissipation, with the sequence resulting
from optimization k serving as the initial condition for
optimization kþ 1, (d) a similar series of optimization is
used to gradually shorten overall cooling times, and
(e) random starting conditions and simultaneous optimiza-
tion of all control parameters. Figure 1 shows the results of
multiple optimizations for varying values of � and a com-
parison to the results of the analytical sequence before
numerical optimization. Figure 2 shows optimization
results for the bad cavity regime. There, we allow the
system state to become squeezed alongside the desired
cooling and optimize for the squeezed phonon count
(measured by the reciprocal purity [36,37]).
An example of such an optimal sequence has been

obtained using the full range of interactions, ðRe½G�xc þ
Im½G�pcÞxm. Starting with an initial thermal phonon occu-
pation of 100, and for � ¼ 0, we are able to achieve a final
occupation below 2� 10�7 in less than 0:62���1 (see the
Supplemental Material for a figure [33]). Another example,
illustrated in Fig. 3, presents the detailed behavior of a
highly dissipative cavity � ¼ 2167�. For such settings, it
ismuchharder to suppress all undesirable terms in the higher
orders of the BCH series. However, the system can be cooled
in under 10�4 2�

� to less than one (squeezed) phonon, if,

again, we allow the system state to become squeezed. All
optimizations have been performed using QLib [38].
Nonlinear case.—For systems with large coupling g0

[39,40], it is necessary to treat the full nonlinear interaction,
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as presented in Eq. (1). Unfortunately, in the case of the
single-cavity system analyzed thus far, it does not appear to
be possible to generate a cooling operator using a simple
sequence of pulses analogous to that used for the linearized
system (see the Supplemental Material for details [33]).

To overcome this limitation, a double-cavity device,
where the oscillator is coupled to two identical cavities
(on the left and right of the oscillator), is proposed [41–43].
This geometrical arrangement results in the coupling of the
two cavities to the oscillator to be of opposite sign, which
allows one to cancel the mechanical oscillator driving
using opposing radiation pressure of the two cavities.
The undriven system Hamiltonian is

H0 ¼ �ðay1a1 þ ay2a2Þ þ �byb

þ g0
ffiffiffi

2
p ðay1a1 � ay2a2Þðby þ bÞ; (4)

where the subscript distinguishes the two cavities and � is
the detuning of both cavities. We define the symmetric and
antisymmetric modes, aa ¼ 1

ffiffi

2
p ða1 þ a2Þ and as ¼ 1

ffiffi

2
p �

ða1 � a2Þ, and the dimensionless quadrature operators,
x ¼ 1

ffiffi

2
p ðay þ aÞ and p ¼ i

ffiffi

2
p ðay � aÞ, reexpressing the

Hamiltonian as

H0 ¼�ðayaaaþays asÞþ�bybþg0ðxaxsþpapsÞxm: (5)

Building the proposed cooling sequence in stages, let us
first examine the terms generated by a f��xa; 0;�xag
sequence, g0�t1psxm þ 2��t1pa. By driving the cavity
during the free evolution period with a pa pulse, the
coefficient for pa, above, can be controlled at will. By
defining this additional pulse as �ð�þ 2Þ��t1pa, the
generated terms transform to

HNL1 ¼ g0�t1psxm � ���t1pa: (6)

The cooling sequence for the double-cavity setup is

ff��xa; �pa;�xag; 0; f�xa; �pa;��xagg; (7)

where the nested notation emphasizes the nesting of se-
quences used. Here, � � �ð�þ 2Þ��t1 and the pulse
durations are ððt1;tf;t1Þ;t0f;ðt1; tf;t1ÞÞ, with t2� t1þ tfþ t1
and t3 � 2t2 þ t0f.
Assuming �t1 � 1, the free evolution implicit in HNL1

of Eq. (6) can be neglected; the inverted sequence
f�xa; 0;��xag, together with the additional driving dur-
ing the free evolution, will yield Eq. (6), with an inverted
sign for �, resulting in what can be viewed as a sequence
of sequences, i.e., a nested pulse sequence. Defining �1 �
�t1t2, we get the terms generated by Eq. (7) to be

HNL2 ¼ þð�� 2Þg0��1xsxm þ 2g0��1pmps þ �g20�
2
1p

2
s

� 3�g20�
2
1x

2
m � �1g

2
0xax

2
m þ 2��1�

2xa: (8)

When � ¼ 2�=ð�� 2Þ, this Hamiltonian contains the
cooling operator for the mechanical oscillator using the
symmetric mode of the cavities; i.e., the xsxm and pspm
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FIG. 2 (color online). Performance of optimized cooling sequ-
ences for � > �. Starting with the analytically derived sequen-
ces, a series of optimizations was used to generate cooling
sequences for successively higher dissipative systems, with the
result of one optimization serving as the starting point for the
next. Note that, in this case, the resulting system state is
squeezed, as a result of higher-order BCH terms.
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FIG. 1 (color online). Results of several covariance matrix
optimization procedures, all with an initial phonon thermal
occupation of 10, jGj< 10�, and � ¼ 0 and taking at most
0:8� 2�

� . The square data sets involve optimizations with ran-

dom initial pulse sequences, optimized with partial (xcxm only)
and full coupling, respectively; the random initial settings and
nature of global optimization are responsible for the poor per-
formance at � 	 0:03. The final temperatures achieved by
sequences of 30 pulses (based on the four-pulse analytical
formulations, repeated 7.5 times) are shown before and after
optimization (triangles). Long cyclic sequences (75 repetitions
of the four-pulse analytical sequence) are shown before and after
optimization and are represented by the diamond sets.
Application of the last set, preoptimization, for � ¼ 0, appears
at the left axis of the plot. Note that, as is often the case with
numeric optimization, the points may represent local optima.
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terms appear with identical coefficients. Setting � ¼ 4,
one may meet the resonance condition � ¼ �, which is
important in some experimental layouts, as stronger inter-
actions are achieved at resonance. An additional xa driving
pulse, of area�2��1t3�

2, can be added to the sequence to
counter the last term in Eq. (8), provided the correction
term and the entirety of the sequence in Eq. (7) are com-
bined via the Trotter decomposition [44], to suppress any
high-order BCH terms. The two quadratic terms can be
absorbed into the corresponding frequency terms by means
of a Bogoliubov transformation.

To achieve ground-state cooling in a time shorter than
themechanical oscillation, followingEq. (8), we require the
beam splitter prefactor �g0 � maxð�; �Þ2, choosing the
ti’s to all be 1 order ofmagnitude smaller than 1=maxð�; �Þ,
to suppress higher-order BCH terms. Finally, note that,
when G 6��, one may do without the periods of dedicated
free evolution, although prefactors will be different.

Experimental feasibility.—To obtain both a cooling rate
� (defined as the prefactor of the cooling operator in the
Hamiltonian) beyond the limitation of continuous sideband
cooling, i.e., �> �, and to reach ground-state cooling
faster than the mechanical frequency, readily available
experimental parameters are sufficient: for an optomechan-
ical Fabry-Perot cavity, one can easily obtain � ¼
2�� 106 Hz, meff ¼ 5� 10�11 kg, and � ¼ 0:75�
[14,20], which yields g0 ¼ 75 Hz � � and hence satisfies
the linear regime of pulsed laser cooling (assuming a cavity
length L ¼ 10�2 m and an optical pump wavelength 	 ¼
1064 nm).

Previously achievable cooling rates have been of the
order of � 	 10�1 � � [20]. With our method, and making

use of optimal control, we fine-tune a 10-pulse cooling
sequence of total duration 0:75 2�

� and pulse energies of

	 40 nJ per pulse, which can be created directly from the
amplitude modulating a 0:5W continuous-wave laser
beam, to obtain a cooling rate � ¼ 1:3�. For an initial
temperature of T ¼ 1 K (ni 	 2900 phonons) and �m 	
300 Hz (Q ¼ 2� 104), this sequence will reach mechani-
cal thermal occupancies on the order of nf 	 0:1.

As a second example, we consider a highly dissipative
optomechanical Fabry-Perot double microcavity with � ¼
2�� 104 Hz, meff ¼ 10�10 kg, � ¼ 2� 105�, and indi-
vidual cavity lengthsL1 ¼ L2 ¼ 4	, as has been suggested
in [45]. The resulting g0 ¼ 106 Hz> � satisfies the non-
linear regime of pulsed laser cooling. Our method requires
a set of laser pulses of length � 50 ps with a maximal
peak power of 1 kW, which is available, for example, in the
form of Q-switched lasers. This will result in a net cooling
rate � ¼ 104�. For �m 	 1, i.e., aQ factor of 6� 104, this
would already allow cooling to the quantum ground state
starting from room temperature.
Conclusions.—We have introduced a novel pulsed cool-

ing method for mechanical oscillators, which surpasses
the intrinsic limits of conventional continuously pumped
cooling. Our scheme is based on generating the cooling
interaction, by quantum interference of successive pulses.
While a simple analytical approach already provides
otherwise unachievable cooling rates �> �, the use of
optimal control methods can further enhance these rates.
We have also shown that current optomechanical configu-
rations could achieve dramatic improvements in their
experimental performance. Following the methodology
presented in this Letter, it is possible to generate a rich
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class of optomechanical interactions, for example, the
down-conversion (two-mode squeezing) interaction or
various nonlinear terms. This establishes a new and com-
plete tool kit for fast preparation and manipulation
of optomechanical quantum states and may very well
provide a route towards room-temperature quantum
optomechanics.
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