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We introduce a systematic approach for the resummation of perturbative series which involves large

logarithms not only due to large invariant mass ratios but large rapidities as well. A series of this form can

appear in a variety of gauge theory observables. The formalism is utilized to calculate the jet broadening

event shape in a systematic fashion to next-to-leading logarithmic order. An operator definition of the

factorized cross section as well as a closed form of the next-to-leading-log cross section are presented. The

result agrees with the data to within errors.
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Observables in weakly coupled gauge theories often
necessitate perturbative resummations to be under calcula-
tional control. This need arises when one performs mea-
surements that are sensitive to infrared scales. By probing
distances long compared to the hard scattering scale, one
introduces large logarithms (logs) that lead to the break-
down of fixed-order perturbative series. Resumming the
large logs has become standard in QCD [1] and can be
accomplished by factorizing the cross section into momen-
tum regions. Factorization makes clear the distinction be-
tween logs of various ratios that may be involved in the
observable, and resummation follows via standard renor-
malization group techniques.

An elegant formalism for factorization is soft-collinear
effective theory (SCET) [2], which is an effective field
theory designed to reproduce the infrared physics in
high-energy processes. The formalism not only streamlines
factorization proofs [3] but also allows one to systemati-
cally include power corrections. The results of this Letter
will all be couched in terms of this framework.

A generic factorized cross section takes on the form

� ¼ H � ½�iJi� � S: (1)

The hard function H is responsible for reproducing the
short-distance physics with wavelengths of the order of
1=Q, where Q is the scale involved in the hard scattering.
Ji and S are the so-called jet and soft functions contain-
ing modes which are highly energetic (collinear) and
soft, respectively. Soft modes have small rapidities
(kþ=k� � 1), while the rapidities of collinear modes are
parametrically larger (k�=k� � 1), where k� are the
light-cone momenta. The tensor product implies the exis-
tence of one or more convolutions in momentum space. In
canonical situations, the resummation of large logs is
accomplished by evolving, via the renormalization group,
each factorized component to its natural scale. The natural
scales are set by the arguments of the logs.H, J, and Smay
contain, for example, logs of Q=�, mJ=�, and mS=�,
respectively, where mJ and mS are quantities which probe
the invariant masses of the modes composing J and S.

While there is a large disparity in rapidity between the
modes which compose S and J, the typical invariant mass
of the modes needs not be distinct. When soft fields have
invariant mass parametrically smaller than the collinear
modes (in this case, the soft modes are called ‘‘ultrasoft’’),
significant simplifications arise. Whether or not there is a
distinction in invariant masses, one must always ensure
that there is no double counting of modes. That is, loop
integrals within a prescribed function (J or S) should only
account for the relevant mode. In principle, this could
be accomplished using a cutoff, but this would lead to
multiple technical difficulties, not the least of which is
the need for gauge noninvariant counterterms. Within the
effective field theory formalism using dimensional regu-
larization, this double counting is avoided by the so-called
zero-bin procedure [4]. In this methodology, one subtracts
from each loop integral its value when the integrand is
asymptotically expanded around the extraneous region.
This procedure not only formally avoids the double count-
ing but also ensures that all integrals in the theory are well
defined. Moreover, the zero-bin subtraction, or some
equivalent subtraction method, is necessary to preserve
factorization [5]. This potential breakdown of factorization
occurs as a consequence of the need to regulate ‘‘rapidity
divergences’’ (light-cone singularities). These divergences
arise schematically from integrals of the form

IR ¼
Z dkþ

kþ
; (2)

which are not regulated in dimensional regularization.
There are multiple ways of regulating this divergence. A
simple way is to introduce a new dimensionful parameter
� via the replacement kþ ! kþ þ � in the denominator.
Note that regulating these divergences will break boost
invariance along the light-cone direction. For any physical
observable, the final result must be boost invariant and
independent of �; this is automatic once zero-bin subtrac-
tion is performed and all sectors added. For the case of
mJ � ms, � dependence cancels in each sector after zero-
bin subtraction and the boost symmetry is restored in each

PRL 108, 151601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

13 APRIL 2012

0031-9007=12=108(15)=151601(5) 151601-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.151601


sector. This will, however, not be the case when mJ �mS,
since the soft and collinear modes mix under boosts.

When mJ �mS, the jet axis, defined as the direction of
the net momentum of the jet, recoils against the soft
emission. In the light-cone coordinates, collinear modes
scale like ðn � p; �n � p; p?Þ �Qð1; �2; �Þ, while soft modes
scale as Qð�; �; �Þ, where � 	 1 and n� is the light-cone
direction chosen to perform the factorization. The jet axis
is no longer aligned with n�, and one should not expect the
jet function to be invariant under boosts along n�.
However, the sum of all sectors will still be invariant. If
we were to reanalyze the rapidity divergences discussed
previously, we would find that the � regulator will cancel
after summing over contributions from all sectors (with
proper zero-bin subtractions) [5]. Boost noninvariance in
the jet function appears in the form log½Q=��, a ‘‘rapidity
log.’’ Resumming these logs using a � regulator is techni-
cally cumbersome, much like resummations with a cutoff
regulator. Here, we introduce a regulator more in the spirit
of dimensional regularization that does not introduce new
dimensionful scales in the integrals and maintains manifest
power counting in the effective theory.

Given the existence of the rapidity logs in addition to the
canonical logs, S and J may not have one definitive scale
associated with them. To resum both sets of logs, we will
introduce another arbitrary scale �, along the lines of � in
dimensional regularization. We expect that, in order to
properly resum all the large logs, we will need to run the
jet in � down to the smaller rapidity scale of the soft
function. In aWilsonian sense, we have two distinct cutoffs
with which to thin degrees of freedom. There will be one
flow in invariant mass and one in rapidity, as shown in
Fig. 1. This is an inherently Minkowskian procedure.

To illustrate this rapidity renormalization group, we will
consider the specific example of the event shape called jet
broadening. Event shapes have played an important role in
precision measurements of the strong coupling �s [6]. A
generalized event shape for event e�eþ ! X at center-of-
mass energy

ffiffiffi
s

p
can be defined [7] in terms of a parameter

a via

eðaÞ ¼ X
i2X

j ~pi?jffiffiffi
s

p e�j�ijð1�aÞ; (3)

where pi? is the transverse momentum with respect to the
thrust axis of the event and �i is the rapidity of the ith
particle. The thrust axis t̂ is defined via maxt̂

P
i2Xjpi �

t̂j= ffiffiffi
s

p
. Two particularly interesting event shapes are the

limits a ¼ 0; 1 corresponding to ‘‘thrust’’ and ‘‘jet broad-
ening,’’ respectively. The limit e 	 1 isolates events com-
posed of back-to-back jets. In the case of thrust, these jets
are composed of collinear radiation, and the recoil due to
soft (ultrasoft, in this case) radiation does not affect the jet
axis, while, for jet broadening, all radiation with parametri-
cally similar transverse momentum can contribute, so that
soft radiation of the form Qð�; �; �Þ recoils the jet off the
thrust axis. In both of these cases, fixed-order perturbation
theory will fail when e is small. However, as long as eQ �
�QCD, we expect nonperturbative effects to be suppressed,

although large logs of e need to be resummed.
The pioneering work on jet broadening resummations

[8] utilized the coherent branching formalism [9]. It was
later stated [10] that the results in [8] neglected terms due
to the recoil of soft gluons. In this Letter, we will provide a
factorization theorem for jet broadening, whose proof will
follow in a subsequent publication [11]. The factorization
proofs for angularity observables (3) in [12] are known to
fail as a approaches 1, since there are growing power
corrections in this limit where one approaches jet broad-
ening. The reason for the apparent breakdown of factoriza-
tion is the fact that, in this limit, the soft radiation has the
same invariant mass as collinear radiation, and one must
change the power counting accordingly to factorize in a
consistent fashion [11].
Henceforth, we set a ¼ 1 and eð1Þ 
 e. In [11], we

prove that the cross section for jet broadening takes the
following factorized form:

d�

de
¼ �0HðsÞ

Z
dende �ndes�ðe� en � e �n � esÞ

�
Z

dp1tdp2tJnðQþ; en; p1tÞJ �nðQ�; e �n; p2tÞ
� Sðes; p1t; p2tÞ; (4)

where, in covariant gauges,

Jn ¼ ��d

Z dxþ
2Nc

eiQ
�xþ=2h0j ��nðxþÞ �6n2 �ðê� enÞ

� �ðP̂? þ ~p1?Þ�nð0Þj0i;
S ¼ p1�2	

1t p1�2	
2t ��d

Z d�12

Nc

h0jSynS �n�ðê� esÞ

� �
�dðP̂n? � ~p1?Þ� �dðP̂ �n? � ~p2?ÞSy�nSnj0i;

(5)

and �0 is the Born cross section. H is the hard matching
coefficient which incorporates all the short-distance con-
tributions and is fixed by matching the QCD currents onto
the SCET currents. Here, �d ¼ 2� 2	 and �ðn; �nÞ are gauge
invariant SCET fields which include collinear Wilson lines

Wn; �n and the Sn; �n are soft Wilson lines. P̂n? and P̂ �n? are
FIG. 1 (color online). Rapidity renormalization group flow
along the on-shell hyperbola versus the standard flow.
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hemisphere-transverse momentum operators, ��d refers to
the area of a �d-dimensional unit sphere, �12 refers to the
relative angle between ~p1? and ~p2?, and pit ¼ j ~pi?j.
Finally, Q� are the large light-cone momenta of the jets
with constraint QþQ� ¼ s, the center-of-mass energy.

As long as
ffiffiffi
s

p
e � �QCD, all of these matrix elements

are calculable in perturbation theory. The bare matrix
elements possess both rapidity and UV divergences.
Thus, standard dimensional regularization is insufficient
to regulate all the integrals. Beyond tree level, one is
immediately met with the aforementioned rapidity diver-
gences. To regulate these integrals, we introduce a regula-
tor into the momentum space (Abelian) SCETWilson lines
as follows:

Wn ¼
�X
perm

exp

� �g

�n � P̂
�
w
j �n � P̂j��

���
�n � An;qð0Þ

���
;

Sn ¼
�X
perm

exp

� �g

n � P̂
�
w
j2P̂3j��=2

���=2
n � As;qð0Þ

���
;

(6)

which suffices for one-loop calculations. Here, � is an
arbitrary scale independent of the usual scale � introduced
in dimensional regularization. w is a bookkeeping parame-
ter which will be set to one at the end of the calculation.

P̂� is the momentum operator, and we have essentially
regulated the longitudinal momenta of the emitted gluons
in each Wilson line, since j2P3j ! �n � P in the collinear
limit. Notice the factor of �=2 in the soft function. This
choice is not a matter of convention. Physically, the factor
arises as a consequence of the fact that soft must be cut off
at both positive as well as negative rapidity. For the non-
Abelian case, we modify the regulator by regulating the
longitudinal group momenta of maximally non-Abelian
webs [11]. The Wilson line regularization breaks manifest
boost symmetry, which is restored once all of the sectors
are combined. The rapidity divergences for the jet and soft
functions will introduce a new set of anomalous dimen-
sions ð
�

J ; 

�
SÞ which are defined via variation of �. Given

that the hard function has no such anomalous dimensions,
we must have the relation

2
�
J þ 
�

S ¼ 0; (7)

or, equivalently, it must be true that the total � dependence
must vanish. Indeed, it is not hard to show [11] that the sum
of the � divergences cancels as a consequence of eikonal-
ization. This cancellation also implies that the individual
factors J and S are multiplicatively renormalizable. Note
that, while gauge invariance is not manifest in the regulated
Wilson line, it can be shown [11] that the gauge-dependent
pieces contain no rapidity divergences.

The tree-level jet function is given by �ðen � p1t=
ffiffiffi
s

p Þ,
and the soft function is given by �ðesÞ�ðp1tÞ�ðp2tÞ. To
determine the relevant scales in the logs, we must convolve
the renormalized one-loop jet function with the tree-level
soft function as dictated in (4). This is most easily seen for

the integrated cross section � ¼ Re0
0 deðd�=deÞ. At the

order of �s, the result of the convolution leads to the
following singular contributions from a jet:

1

�0

�jet ¼ ��sCF

2�
ln

� ffiffiffi
s

p
e0

2�

��
3þ 4 ln

�
�

Q�

��
: (8)

It thus becomes clear that the jet function depends on two
different kinematical scales (

ffiffiffi
s

p
e0 andQ

�). In addition, we
see that dependence on rapidity manifests in the form of
the rapidity log, lnðQ�=�Þ. The soft function singular
contributions are

1

�0

�soft ¼ �sCF

�

�
�2ln2

� ffiffiffi
s

p
e0

2�

�
þ 4 ln

�

�
ln

� ffiffiffi
s

p
e0

2�

��
(9)

and have rapidity logs set at the low scale
ffiffiffi
s

p
e0.

The utility of � is clear, as we may choose ��Q� � ffiffiffi
s

p
and �� ffiffiffi

s
p

e to minimize the logs in the jet function.
Then, to minimize the logs in the soft function, we run �
from the scale

ffiffiffi
s

p
e up to

ffiffiffi
s

p
. Furthermore, we will need to

run the hard matching coefficient down to the scale
ffiffiffi
s

p
e in

the dimensional regularization parameter �. This scenario
is shown schematically in Fig. 2.
Here, we will perform the running at next-to-leading log

(NLL), which sums all terms of order one, where we take
the scaling �s lnðeÞ � 1. The next-to-next-to-leading-log
(NNLL) analysis will be performed in [11]. The hard
function renormalization group equation is well known to
NNLL (see [13]). The running is most simply performed in
Laplace transform space, with ðb; b0Þ conjugate to
ðp1t; p2tÞ, respectively. We find at one loop


S
�ðb; b0Þ ¼ �2�ð0Þ

c ½ðlogðb�e
EÞ þ logðb0�e
EÞ�; (10)

where �ð0Þ
c ¼ �sCF=� is the cusp anomalous dimension

for Wilson lines. Similar equations can be written for the
two jet functions in terms of their corresponding anoma-
lous dimensions.
In our strategy of resumming logs for the soft function,

we only need a two-loop cusp. The solution of the �
renormalization group equation for the soft function is

S ð�; �Þ ¼ Vsð�; �=�0Þ � Sð�; �0Þ; (11)

where � represents convolution in kinematical arguments
which are dropped for brevity. Here,

FIG. 2 (color online). Running strategy.
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Vsðp1t; p2t;!sð�; �=�0ÞÞ

¼ e�2
E!s

�2ð1þ!sÞ
�
!s

�

�
1

ðp1t

� Þ1�!s

�
þ
þ �ðp1tÞ

�

�
�
!s

�

�
1

ðp2t

� Þ1�!s

�
þ
þ �ðp2tÞ

�
; (12)

with !sð�; �=�0Þ ¼ 2�c½�sð�Þ� log �
�0
. To minimize logs

in the hard function, we need to evolve the hard function
using

Hðs;�Þ ¼ Hðs;�0ÞUHðs;�0; �Þ; (13)

where, up to NLL, UH can be found in [13] and
Hðs;�0Þ ¼ 1 to the order we are working.

The results we have presented so far are for the angu-
larity at a ¼ 1, which is related to the total jet broadening
BT via e ¼ 2BT . We will present cross sections for total
jet broadening here and compare with the data. For the
next-to-leading-order singular cross section, we get

d�

dBT

¼ �0

�sð�ÞCF

�BT

ð�3� 4 logBTÞ; (14)

where �0 is the Born cross section. This result is in
agreement with Ref. [8]. For the resummed cross section,
up to NLL order, we have

d�

dBT

¼ �0

BT

UHðQ2; �Q;�Þ
�ð2!sÞe2
E!s

�
QBT

�

�
2!s

: (15)

The result differs from [10] only because we Laplace

transformed in b and did not Fourier transform in ~b, which
would yield [11] results identical to those in [10]. However,
note that the difference between the results in [8,10] is at
most 10% (at the peak). Our results have the advantage that
the scale dependence on � and � is manifest, allowing
us to define a systematic theoretical error, which was
absent in [10].

In Fig. 3, we have plotted the theory cross section and
the data [14]. We see that, given the large error bars,
the agreement with the data is reasonable. However, the
NNLL calculation will reduce the theory errors consider-
ably. We have not included the theory errors due to power
corrections. In the small BT region, these are nonperturba-
tive and scale as�QCD=ðBTQÞ and can be expected to be of
the order of 20–30%. In the tail region, there are correc-
tions of the order of BT relative to the singular contribu-
tions. The disagreement at intermediate values of BT ,
where fixed-order calculations suffice, is expected,
since logs will not dominate in this region and NLL results
leave off order-one contributions. This region will be cor-
rectly reproduced in the NNLL calculation. Therefore, by
systematically improving this result by including higher-
order corrections in �s, power corrections, and nonpertur-
bative correction, this result can be used for precision
�s determination. Such an analysis using thrust was done
in [13].
Finally, we wish to point out that the rapidity renormal-

ization group can be utilized in multiple other settings
where rapidity divergences arise. Generically, this will
occur whenever kinematically soft radiation has invariant
mass of the same order as the collinear radiation, as in
cases where one measures the pT of the final state. Such
observables will be discussed in more detail in [11].
Furthermore, it would be interesting to utilize our rapidity
renormalization group in the context of exclusive pro-
cesses, where it has been shown that rapidity factorization
sheds light on end point singularities in integrals over
light-cone distribution functions [4].
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