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We introduce a measure Q of bipartite quantum correlations for arbitrary two-qubit states, expressed as

a state-independent function of the density matrix elements. The amount of quantum correlations can be

quantified experimentally by measuring the expectation value of a small set of observables on up to four

copies of the state, without the need for a full tomography. We extend the measure to 2� d systems,

providing its explicit form in terms of observables and applying it to the relevant class of multiqubit states

employed in the deterministic quantum computation with one quantum bit model. The number of required

measurements to determine Q in our scheme does not increase with d. Our results provide an

experimentally friendly framework to estimate quantitatively the degree of general quantum correlations

in composite systems.
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Quantum entanglement is one of the most fundamental
consequences of the superposition principle and undoubt-
edly plays a key role in designing faster-than-classical
algorithms, teleportation protocols, and superdense coding
[1]. However, it may not be the ultimate resource behind
the power of quantum computation [2]. It has been recently
found that, even with no entanglement, some mixed-state
based schemes [such as the so-called deterministic quan-
tum computation with one quantum bit (DQC1) [3]] allow
an improvement of performance in computing tasks [4],
and, more generally, separable states possess genuinely
quantum correlations (QCs) [5], captured, e.g., by the
quantum discord [6,7], which cannot be described within
a classical scenario [6–11]. In general, QCs in a state �AB

can be defined as the minimum amount of total correlations
(measured, e.g., by the mutual information) between Alice
and Bob that are destroyed by a local measurement on one
or both subsystems [6–8,10,12–15]. For pure states, QCs
coincide with entanglement [6]. For mixed states, even if
some operational interpretations have been proposed
[11,15–18], basic technical issues still prevent us from
reaching a full comprehension of their nature. Indeed,
theoretical evaluation and experimental detection of QCs
both represent hard challenges: Any attempt to determine
the QCs in a given state �AB is hindered by the difficulty of
solving an optimization to determine the least disturbing
measurement for that state, thus requiring the full knowl-
edge of it. Recently, some nontomographic detection
schemes for witnessing nonvanishing QCs by measuring
just one observable have been proposed and implemented
[14,19,20]. However, by noting that all states possess non-
zero QCs but a null-measure set [21], the most worthwhile
question becomes that of evaluating, by a proper measure,
the actual amount of QCs encoded in a state. Only then can
quantitative connections be drawn between the QC content
and the performance of some quantum protocol using them
as a resource [4,22,23].

In this Letter, we show that QCs in a general two-qubit
state � can be reliably quantified without any explicit
optimization and with no need to know the full shape of
the state. We define a QC measure Q which is a state-
independent function of the density matrix elements. In
particular, Q can be expressed in terms of the expectation
values of a set of nine observables fOig. Consequently,
such a function could be evaluated by designing simple
quantum circuits simulating the measurements of fhOiig
[24–31]. However, following the alternative approach of
Refs. [32–34], we further show that the quantity Q can be
even less demandingly measured by performing seven
local projections on up to four copies of the state �.
Then, we extend our measure to capture bipartite QCs in
states of 2� d dimensional systems, finding that seven
projective measurements are always sufficient to experi-
mentally determine Q; i.e., the number of measurements
required is independent of d. Specifically, we use this
construction to obtain a quantitative estimate of QCs in a
recent experimental implementation [35] of the DQC1
model [3] with four qubits.
A number of conceptually different measures of general

QCs have been recently proposed [5–8,10,12–15]. In the

following, we consider a two-qubit state � � �AB and

adopt a geometric perspective, quantifying the QCs in

terms of the minimum distance of � from the set � of

classical-quantum states. The states � 2 � filling such a

set are left unperturbed by at least one choice of projective

measurement on Alice and take the form [11] � ¼P
ipijiihij � �iB, where pi are probabilities, fjiig is an

orthonormal vector set, and �iB is the marginal density

matrix of Bob. Adopting the Hilbert-Schmidt norm

kMk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMMyÞ

p
, one obtains a QC measure known

as ‘‘geometric discord,’’ introduced in Ref. [14], operation-

ally interpreted in Refs. [17,23], and defined as
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DGð�Þ ¼ 2min
�2�

k�� �k22; (1)

where we add a normalization factor 2. The geometric
discord enjoys a closed expression for two-qubit states.
First, one needs to express the state in the Bloch basis: �¼
1
4

P3
i;j¼0Rij�i ��j ¼ 1

4 ðI4 þ
P3

i¼1 xi�i � I2 þP3
j¼1 yjI2 �

�j þP
3
i;j¼1 tij�i ��jÞ, where Rij ¼ Tr½�ð�i � �jÞ�,

�0 ¼ I2, �i (i ¼ 1; 2; 3) are the Pauli matrices, ~x ¼
fxig; ~y ¼ fyig represent the three-dimensional Bloch col-
umn vectors associated to A and B, and tij are the elements

of the correlation matrix t. Then, following Ref. [14], we
have DGð�Þ¼ 1

2ðk ~xk2þktk22�4kmaxÞ¼2Tr½S��2kmax,

with kmax being the largest eigenvalue of the matrix S ¼
1
4 ð ~x ~xT þ ttTÞ. We now provide an explicit expression for

kmax. The characteristic equation of the matrix S is cubic
and can be solved analytically [36]. Being constrained to
real solutions only, we write the eigenvalues fkig of S as

ki ¼ Tr½S�
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Tr½S2� � 2Tr½S�2p

3
cos

�
�þ �i

3

�
; (2)

where f�ig ¼ f0; 2�; 4�g and � ¼ arccosfð2Tr½S�3 �
9Tr½S�Tr½S2� þ 9Tr½S3�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð3Tr½S2� � Tr½S�2Þ3p g. Since
� is an arccosine, we have 0 � �=3 � �=3 and the maxi-

mum of cos�þ�i

3 is reached for �i � �1 ¼ 0. Hence,

kmax � maxfkig ¼ k1, and the geometric discord for an
arbitrary two-qubit state � assumes the form of a state-
independent function of its entries (�ij), that is,

DGð�Þ ¼ 2ðTr½S� � k1Þ: (3)

However, we aim to define a simpler, and more accessible
experimentally, QC quantifier. By replacing � with 0 in
Eq. (2), we obtain a meaningful and remarkably tight
lower boundQ � DG (see Fig. 1) to the geometric discord,
given by

Qð�Þ ¼ 2
3ð2Tr½S� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Tr½S2� � 2Tr½S�2

q
Þ: (4)

The quantityQ is still a state-independent expression of the
entries of �, but a rather easier one to manage thanDG, and
can be regarded as a bona fide measure of QCs in its own
right. Indeed, it is non-negative by definition; it is faithful
(i.e., vanishes only on classical-quantum states �) and
coincides withDG for pure states. The latter two properties
can be proven as follows. Faithfulness is equivalent to
showing that Q ¼ 0 , DG ¼ 0; the condition for vanish-
ing Q is Tr½S�2 ¼ Tr½S2�, and by the Cayley-Hamilton
theorem this implies Tr½S�3 ¼ Tr½S3�, i.e., DG ¼ 0. The
equality betweenDG andQ for pure states follows from the
fact that, writing a bipartite pure state (where subsystem A
is a qubit) in the Schmidt decomposition, we have � ¼ 0.
We also find thatQ provides a nontrivial upper bound on an
entanglement measure, specifically the squared negativity
N 2 [1]. In fact, the chain DG � Q � N 2 holds for
arbitrary two-qubit states, with all inequalities saturated
on pure states [37]. Finally, let us mention that a simple
upper bound on DG can be obtained as well from Eq. (2):
DG � 4Tr½S�=3.
From now on, we adoptQ as a rightful QC quantifier for

two qubits, endowed with the advantage of requiring
neither theoretical optimizations nor experimental state
tomography for its evaluation. Specifically, the task of
providing a recipe for measuring Q reduces to writing
Tr½S� and Tr½S2� as functions of suitable observables and
is accomplishable as follows. Defining the matrices X ¼
~x ~xT and T ¼ ttT, we have Tr½S� ¼ ðTr½X� þ Tr½T�Þ=4 ¼
Tr½�2� � Tr½�2

B�=2 and Tr½S2� ¼ 1
16 ðTr½X2� þ Tr½T2� þ

2Tr½XT�Þ. After some algebra we obtain

Tr½S2� ¼ 1
4ð�2� 8Tr½�4� þ 8Tr½�3� þ 6Tr½�2�2 � 2Tr½�2�ð5þ Tr½�2

B�Þ � 2Tr½�2
A�2 þ 10 Tr½�2

A� � Tr½�2
B�2

þ 12Tr½�2
B� � 6Tr½�2

A�Tr½�2
B� þ 4Tr½�ðI2 � �BÞ�ðI2 � �BÞ� � 24Tr½�ð�A � �BÞ�

þ 8Tr½�ð�A � I2Þ�ð�A � I2Þ� þ 8Tr½�2ð�A � �BÞ�Þ: (5)

By substituting in Eq. (4), Q takes the form of a function
of fourth-order polynomials of (�ij); in particular, it is
written in terms of traces of matrices powers. Now,
given a general density matrix �, it holds [24–27,30,31]
that Tr½�k� ¼ Tr½Vk��k�, where Vk is the shift opera-
tor, Vkjc 1c 2 . . . c ki ¼ jc kc 1 . . . c k�1i. Also, for two

unknown states �1 and �2, it has been proven [27] that
Tr½V2�1 � �2� ¼ Tr½�1�2�. More generally, we have [38]
Tr½�1�2 . . .�k� ¼ Tr½Vk�1 � �2 � � � � � �k�.
We can exploit these results and follow the approach

proposed in Ref. [27] for estimating the expectation values
of the appropriate unitary operators fOig9i¼1 to associate
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FIG. 1 (color online). Geometric discord DG versus its tight
lower bound Q for 3� 104 random two-qubit states. The plotted
quantities are dimensionless.

PRL 108, 150403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

13 APRIL 2012

150403-2



with each of the nine independent factors in Eq. (5) (which
include those appearing in Tr½S� as well). They can all be
expressed as shift operators Oi ¼ Vk on a number k (k �
4) of copies of the global and/or marginal density matrices
and their overlaps, depending on each particular term in
Eq. (5). The circuit to be implemented, which includes an
ancillary meter qubit, is depicted in Fig. 2(a). For each Oi,
we build an interferometer modified by inserting a
controlled-Oi gate: Defining the visibility v, we obtain in
general Tr½Oi�1 � �2 � � � � � �k� ¼ v. Hence, QCs can
be measured quantitatively from the expectation values
of the nine operators fOig only—as opposed to 15 observ-
ables required for complete state tomography—obtained in
the laboratory via readouts on the ancillary qubit.

We wish now to provide an alternative scheme for the
exact measurement of Q that further reduces the required
resources for its implementation and appears even more
experimentally friendly. This is done by rephrasing the
detection scheme in terms of local (with respect to the
Alice-Bob split) projectors on multiple (up to 4) copies ��n
of the same state � [28,29,32–34]. We observe that

Tr ½S� ¼ Tr½�2� � Tr½�2
B�=2: (6)

It is known [29] that Tr½�2� ¼ Tr½V2��2� ¼ Tr½ðPþ �
P�Þ��2� ¼ 1� 2Tr½P���2�, where V2 is the swap
operator and P	 are the projectors on the symmetric or
antisymmetric subspaces. By naming Ai (Bj) the subsys-

tems controlled by Alice (Bob) in the ith (jth) copy of the
bipartite state �, we have then

Tr½S� ¼ 1
2 � 2Tr½P�

ðA1B1ÞðA2B2Þ�
�2� þ Tr½P�

B1B2
��2
B �; (7)

where for two qubits P�
B1B2

¼jc�
B1B2

ihc�
B1B2

j,
jc�

B1B2
i ¼ ð1= ffiffiffi

2
p Þðj01i � j10iÞ, while P�

ðA1B1ÞðA2B2Þ ¼
1
8 ð3I16 �

P
i�

ð4Þ
i � �ð4Þ

i Þ, where with �ðdÞ we indicate the

generalized (and normalized) Gell-Mann matrices for di-
mension d. Alternatively, we can exploit the very recent
results of Ref. [34] and write

Tr½S� ¼ 4c1 � 2c2 � c3 þ 1
2;

c1 ¼ Tr½ðP�
A1A2

� P�
B1B2

Þ��2�;
c2 ¼ Tr½ðP�

A1A2
� IB1B2

Þ��2�;
c3 ¼ Tr½ðIA1A2

� P�
B1B2

Þ��2�:

(8)

In Ref. [29], a method to measure the purity of a quantum
state, which is all that we need, is presented and demon-
strated by means of the implementation of an all-optical
setup. Reference [39] presents a more comprehensive de-
tection scheme for projective measurements; see also [40]
for a very recent alternative method. To sum up, in this
framework we need three measurements of two-qubit pro-
jectors [Eq. (8)]—or two measurements, one on two qubits
and the other (nonlocal with respect to the Alice-Bob split)
on four qubits [Eq. (7)]—and two copies of the state, to
measure Tr½S�.
The detection of Tr½S2� can also be recast in terms of

local projections. Following Ref. [34], we obtain

Tr½S2� ¼ 16c4 þ 8ðc7 � c5 � 2c6Þ þ c23

þ 4c22 � c3 � 2c2 þ 1
4;

c4 ¼ Tr½ðP�
A1A4

� P�
A2A3

� P�
B1B2

� P�
B3B4

Þ��4�;
c5 ¼ Tr½ðP�

A1A4
� IA2A3

� P�
B1B2

� P�
B3B4

Þ��4�;
c6 ¼ Tr½ðP�

A1A4
� P�

A2A3
� P�

B1B2
� IB3B4

Þ��4�;
c7 ¼ Tr½ðIA1A4

� P�
A2A3

� P�
B1B2

� IB3B4
Þ��4�: (9)

Compared to the measurement of Tr½S�, here we have
again projectors on pairs of qubits; however, they need to
be implemented on four copies of the state �. As Eq. (9)
shows, we can evaluate the value of Tr½S2� by measuring
four such independent projectors in the laboratory.
Therefore, in the most economical scheme devised here,
the full quantitative detection of bipartite QCs in an arbi-
trary two-qubit state � as measured by Q demands six or
seven projective measurements on (up to) four copies of
the state �. Notice for comparison that, to measure the
geometric discordDG exactly [Eq. (3)], one would need 11
projective measurements on up to six copies of the state
[34]. On the other hand, at a qualitative level, a single
observable witness suffices to reveal whether Q (or the
discord) is zero or not [14,19,20,35].
We now extend our measure to higher-dimensional sys-

tems, in particular, to 2� d systems, which include the
practically relevant case of one qubit (A) versus a register
(B) of n qubits. The geometric discord for an arbitrary state
� of a 2� d system has been derived in Ref. [41] and has
the same expression as Eq. (3), just amended with the
following generalizations: Tr½S� ¼ 1

2d ðTr½X� þ Tr½T�Þ,
xi ¼ Tr½�ð�i � IdÞ�, and tij ¼ Tr½�ð�i � �jÞ�, where,

for example, we can assume f�jg � f�ðdÞ
j g as the

d-dimensional basis for Bob’s subsystem. We can repeat

FIG. 2. (a) Quantum circuit estimating Tr½Oi�1 � �2 � � � � �
�k� ¼ v. Two Hadamard gates H are applied to an ancilla,
followed by a measurement in the computational basis. The
interferometer is modified by inserting a controlled-Oi gate
acting on the overlap of states. (b) DQC1 model with a register
of three maximally mixed qubits and an ancillary qubit in a state
of polarization�. Expectation values of �1 and �2 on the ancilla
return the real and imaginary parts of Tr½U�=8.
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the steps done for 2� 2 systems and obtain a
state-independent form for DG and for the lower bound
Q as well, since the subsystem A is still a qubit and there-
fore the characteristic equation of S remains a cubic. Thus,
for 2� d states, the task we face is again to express Tr½S�
and Tr½S2� in terms of observables.

The most practical way to proceed is to consider the
scheme in terms of local projectors. In this respect, it is
straightforward to verify that Eqs. (7)–(9) still hold for
2� d systems: Their expression can be written in exactly
the same form as for the two-qubit case, provided we
generalize the swap and the projectors P� to arbitrary
dimension d as follows: V2 ¼ 1

d ðId2 þ
P

i�i � �iÞ and

P�
SjSk

¼ 1
2d ½ðd� 1ÞId2 �

P
i�i � �i�, where Sj and Sk de-

note two d-dimensional systems and the �i’s reduce to
Pauli matrices in dimension d ¼ 2 (e.g., when we want
to calculate Tr½�2

B� in the 2� 2 case). This observation,
combined with the previous analysis, allows us to conclude
that, even for arbitrary states � of 2� d dimensional
systems, we just need six or seven projective measure-
ments on up to four copies of the state � to quantify
bipartite QCs between the qubit and the remaining qudit
system. The number of measurement settings thus does not
increase with d, which demonstrates the efficiency and
scalability of our scheme. Clearly, the optical implemen-
tation of projectors of the type PBiBj

, i.e., multiqubit pro-

jectors, is more complicated than the two-qubit case; see,
e.g., [42]. However, the method demonstrated in Ref. [39]
can be extended to arbitrary dimensions without dramati-
cally increasing the complexity of the experimental setting
(as claimed by the authors in the last section of Ref. [39]).
More precisely, the number of optical elements required
to implement each projector (basically interferometers)
should increase polynomially—namely, linearly—with d
[39,43], in stark contrast with a complete quantum state
tomography for which the required resources scale expo-
nentially [44]. Note also that our scheme for 2� d systems
is completely general and no prior knowledge of the form
of the state is required; it relies only on the implicit
assumption that the subsystem A has dimension 2—i.e.,
it is indeed a qubit. This assumption can be verified in the
laboratory a priori, e.g., by measuring suitable Hilbert
space dimension witnesses [45] or, possibly, with tomo-
graphy on the marginal state of subsystem A, which con-
sumes only a fixed, small amount of extra resources.

We consider as an example the four-qubit implementa-
tion of the DQC1 model for quantum computation [3]. This
algorithm estimates the trace of a normalized unitary ma-
trix U. We consider the instance recently implemented
experimentally in Ref. [35] (where only a discord witness
rather than a quantitative estimate was measured), where

U ¼ ða; a; b; 1; a; b; 1; 1Þ, with a ¼ �ðe�i3�=5Þ4 and b ¼
ðe�i3�=5Þ8. Such a specific gate is used for the approxima-
tion of Jones polynomials [46]. The first qubit (the ancilla)
is initially in a state of polarization �, while the remaining

qubits are maximally mixed. Referring to the scheme of
Fig. 2(b), the final state of the system before readout is

�out ¼ 1

16

I8 �Uy
�U I8

� �
: (10)

We calculate the bipartite QCs Qð�outÞ, measurable in the
laboratory according to the scheme detailed above, between
the ancilla and the residual three-qubit system, and we
compare them with the geometric discordDG, while entan-
glement is always zero across this bipartition. The plots in
Fig. 3 reveal that Q is in good agreement with DG, being a
monotonic function of the polarization � of the ancilla,
hence showcasing its reliability as a QC quantifier [4].
In conclusion, we presented a scheme to quantify theo-

retically and experimentally general bipartite QCs for
arbitrary two-qubit and qubit-qudit states. We introduced
a measure Q that is a state-independent function of poly-
nomials of the density matrix elements and can be mea-
sured by implementing a restricted number of quantum
circuits or, alternatively, a restricted number of local
projections, on up to four copies of the state, which appears
in reach of current technology [33,39,43]. We used our
measure to evaluate quantitatively the degree of QCs
created in a recent experimental implementation [35] of
the DQC1 model with four qubits [3].
Providing experimentally friendly recipes for the mea-

sure of QCs in n-partite realizations of quantum informa-
tion protocols is key to clarifying their usefulness for the
performance of such practical tasks [2]. In this respect,
much attention is being devoted to the QC dynamics in
open quantum systems [47–50] and, independently, to
characterizing the transition from Markovian to non-
Markovian regimes [51–55]. Non-Markovianity can be
witnessed by monitoring entanglement between one sub-
system, coupled to the environment, and another clean
subsystem [54]. One might imagine that more general
QCs could be somehow more sensitive to the properties
of dynamical maps. However, it is known that even local
Markovian channels (as well as Markovian common envi-
ronments [56]) can induce an increase of discordlike QCs
in a composite system [57]. Therefore, the question
needs to be formulated properly and with care,
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FIG. 3 (color online). Bipartite quantum correlations as mea-
sured by Q (red continuous line) and DG (black dashed line) for
the output state of the DQC1 model as implemented in Ref. [35]
with four qubits, plotted as functions of the initial polarization �
of the ancilla qubit. All the plotted quantities are dimensionless.
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demanding a dedicated analysis which is beyond the scope
of this work [58].

We hope our Letter may contribute to render the general
quantumness of correlations a more accessible (theoreti-
cally and experimentally) concept in the study of complex
quantum systems.
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