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Many experiments and simulations of packings of monodisperse hard spheres report a dominance of the

face-centered cubic structure in the hexagonally close-packed limit, even though it has no significant

energetic or entropic gain over other close-packed configurations. Combining simulations and experi-

ments, we demonstrate that a simple mechanical instability which occurs during the packing process may

play an important role in selecting the face-centered cubic structure over other close-packed alternatives.

Our argument is supported by detailed quantitative analyses of key configurations in sphere packings and

highlights the importance of the packing dynamics. The proposed mechanism is elementary and should

therefore play a role in a wide range of sphere systems.
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Understanding how spheres pack together is an art as
much as a science [1] and has kept generations of phys-
icists, mathematicians, and engineers on their toes. Sphere
packings may stand as model systems for the organization
of atoms or molecules, or they may be of interest in their
own right when canon balls need to be shipped [2,3] or
spherical sweets are packed into a jar [4]. Sphere packings
have a number of characteristic, density-dependent prop-
erties [1]. Of interest in this Letter is the high-density limit
in which the spheres ‘‘crystallize’’ into hexagonally close-
packed structures with a density of 74% [3]. As sketched in
Fig. 1, these structures consist of close-packed layers of
triangularly arranged spheres [Fig. 1(a)]. At constant den-
sity, these can be stacked together in various periodic or
random fashions. In the simplest periodic structure, the
layers are arranged as A-B-A-B-. . . [Fig. 1(b)], which
corresponds to the ‘‘hexagonally close-packed (hcp) struc-
ture’’. Slightly more complex is the A-B-C-A-B-C-. . .
arrangement [Fig. 1(c)], which corresponds to ‘‘face-
centered cubic’’ (fcc) structure. All other sequences of
these layers are commonly labeled ‘‘random hexagonally
close-packed.’’

Packing density is generally not the only quantity which
a physical system needs to optimize. More intricate physi-
cal arguments may select one hexagonally close-packed
structure over another, even though they have the same
density [5]. This is the case, for example, when the total
energy of a packing needs to take into account the presence
of long-range interactions between spheres, which is sen-
sitive to the detailed packing structure. Crystallization in
strongly charged colloids provides a typical example for
this, for which a fcc preference is found [6]. A preference
of fcc packing is also regularly reported for truly hard-
sphere systems which interact only upon contact or more
indirect forces, provided, for example, by the flow of the
fluid in which they are dispersed [7,8]. Such hard-sphere
systems come in many different types [7–10,10–15],

ranging from thermodynamically stable colloids to sedi-
menting or creaming systems such as foams, emulsions, or
granular media. In these systems, fcc preference has been
reported, yet has been little investigated and—if at all—
tends to be justified by an entropy argument [5]. Whilst the
small entropic differences between the structures may
account for structural differences in thermodynamically
stable colloids [14,15], they seem a less likely candidate
to explain fcc preferences in crystals of nearly millimeter-
size bubbles [7,13] or granular media [9]. Furthermore, in
many of the reported systems, the preference of the fcc
packing depends strongly on how the close-packed crystal
is generated. Even though this history dependence is a
classic feature of a system which undergoes a jamming
transition from a less dense to a dense state, it may also be a
signature of a mechanical instability, which acts during the
crystal formation.
Combining numerical simulations, experiments with

equal-volume bubbles, and a simple mechanical argument,
we therefore show here that, when hard spheres are packed
under an external force field (such as gravity), fcc and other
close-packed structures are formed with equal probability.
However, the fcc structure is mechanically more stable and
therefore less often destroyed in the continuing dynamic
process. We demonstrate this here for a particular system

FIG. 1 (color online). (a) Layer of triangularly arranged
spheres. (b) A-B-A-B-type layering of the hcp, and
(c) A-B-C-type layering of the fcc packing, expressed by color
coding.
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of spheres sedimenting or creaming in a liquid under
gravity and steady drainage, but the argument is so ele-
mentary that we consider it applicable in much more
general scenarios.

The numerical simulations were performed with the
in-house code PRIME [16–18], which solves the three-
dimensional, incompressible, unsteady Navier-Stokes
equations on a Cartesian grid. The spheres are treated by
an immersed-boundary method (IBM) which couples the
fluid and the moving objects [19], imposing a no-slip
condition at their surface. In [18], detailed information
on the improved variant of the IBM employed for the
present study is available. Some numerical details are
also provided in Table I. The motion of the spheres is
calculated by solving the differential equation of motion
for each sphere. The collision of two spheres, i and j, with
center position X, diameter D, and surface tension � is
modeled by an additional repulsive force Fcoll acting on the
center of the spheres in the direction normal to the contact
plane

Fcoll;i ¼ maxf0; 2��ðjXi �Xjj �D� rsÞg: (1)

This expression represents the forces which occur upon the
deformation of two spheres in contact [20] as with the
present IBM forces between surfaces of immersed objects
are not resolved. The safety clearance rs is necessary to
prevent the spheres from overlapping and decreases the
maximum packing fraction by a small amount (rs ¼
0:1 D). Tangential collision forces are not explicitly added
here because they are not essential for fcc preference [10].

A sketch of the computational setup is shown in
Fig. 2(a). It aims to investigate the agglomeration process
of spheres on an existing, crystalline sphere cluster which
is represented by two layers of fixed, triangularly arranged
spheres at the top of the domain. Drainage in the cluster is
artificially included by a constant downward velocity v0

that is imposed at the top of the domain. The horizontal
directions are periodic in order to minimize wall and
confinement effects on the ordering. The parameters
employed in the simulation are given in Table I. They are
expressed in terms of the sphere diameter D, fluid density
�f, sphere density �p, fluid viscosity �, static drainage

velocity v0, and the gravitational acceleration g. These
parameters correspond to the specific case of small gas
bubbles rising in a low-viscosity liquid.
We released 120 randomly initialized mobile spheres in

100 runs with a rate of r ¼ 2:5=tref under a normalized
drainage rate v0=vref . The spheres rise and agglomerate
below the fixed layers. We tested different rates 0:75=tref <
r< 7:5=tref without noticing a measurable effect on the
results. Figure 2(b) shows how the density profile of the
sphere cluster develops as a function of time for v0=vref ¼
0:12. The resulting positions of each sphere in the third
and fourth layer were classified into ‘‘hcp,’’ ‘‘fcc,’’ or
‘‘unordered’’ by matching with the fixed spheres of the

TABLE I. Parameters, similarity numbers, and reference val-
ues for the simulations conducted.

Parameter Symbol Value

Fixed spheres � � � 2� 56
Mobile spheres � � � 120

Density ratio �f=�p 200

Reynolds number Re ¼ v0D
� 4 � � � 120

Archimedes number Ar ¼ ð�f��pÞgD3

�f�
2 3:14� 105

Eötvös number Eo ¼ ð�f��pÞgD2

� 0.1

Reference length Lref ¼ D � � �
Reference velocity vref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�f��pÞg16�D3

�f
2
�
4D

2

r

� � �
Reference time tref ¼ Lref=vref � � �
Domain size w� d� h 7D� 7D� 14D
Grid points nw � nd � nh 128� 128� 256
IBM marker points NL 1056

FIG. 2. (a) Setup of the simulations conducted. (b) Averaged
distribution of spheres over height at discrete times, showing the
filling of the layers. Broken lines indicate the theoretical posi-
tions of the ordered layers. (c) Number of ordered spheres nfcc
and nhcp in the third and fourth layers averaged over 100 runs.

(d) Preference P of fcc ordering in the third and fourth layers and
for individual spheres.
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first two layers. Figure 2(c) shows how the number nfcc and
nhcp of fcc- or hcp-packed spheres, respectively, evolves

with time for the third and fourth layer (averaged over 100
runs). We observe three different stages during the process
[Figs. 2(b) and 2(c)]: (I) The agglomeration of spheres in
the third layer generates fcc or hcp configurations with
equal probability [Fig. 2(c)]. (II) The filling of the fourth
layer starts before the third layer is complete. There appear
slightly more fcc than hcp spheres in the fourth layer.
(III) The existing spheres in the fourth layer act as seeds
for the arrangement of newly arriving spheres so that the
lead of fcc arrangement is amplified even when the third
layer is already filled. The equal probability for the occur-
rence of fcc and hcp configurations in the third layer
disproves a previously evoked argument [8] that a fcc
preference in bubble clusters may result from the hydro-
dynamical effects arising when new spheres arrive at an
already formed, close-packed cluster. Such an argument
assumes that a sphere approaching two closely packed
layers (A-B configuration) may experience less hydro-
dynamic resistance when approaching in a fcc rather than
in a hcp configuration, since the fluid channel above the C
position of the fcc packing is not blocked by another sphere
[Figs. 1(b) and 1(c)]. To further disprove the validity of
such an argument, we also performed simulations in which
individual spheres arrive on the two fixed layers. To
quantify the fcc preference, we define Pfcc ¼ ðnfcc �
nhcpÞ=ðnfcc þ nhcpÞ. The fcc preference is plotted against

the normalized drainage velocity v0=vref in Fig. 2(d). It
shows no systematic fcc preference for individual or
multiple spheres arriving in the third layer. On the contrary,
in the fourth layer Pfcc is systematically positive and
increases with drainage velocity v0=vref . It may be tempt-
ing to consider the minimization of the overall hydro-
dynamic resistance of the close-packed cluster under the
imposed drainage as an argument for the dominance of the
fcc packing. However, we find that the hydrodynamic
resistance of periodic fcc packing is 12% higher than that
of hcp packing.

We therefore propose here an alternative argument,
which is based entirely on the mechanical stability of the
packing: since the third layer is mobile and not completely
filled in stage (II), the arrival of spheres in the fourth layer
promotes a mechanical instability and rearrangement of
the hcp into fcc packing. The drainage flow provides an
additional activation energy and therefore leads to an in-
creasing fcc preference. The fundamental mechanism at
the heart of this instability is shown in Fig. 3(a). Let us
consider a fcc and a hcp pyramid to whose tip we apply an
additional force Facc which models accumulated buoyancy
or inertial forces of spheres arriving from below. In the fcc
pyramid, this force is transferred from sphere (1) over (2)
to (3) along a straight contact line. In the hcp pyramid,
however, the positions of the sphere centers (1), (2), and (3)
are not in line. Thus, the force of sphere (1) transferred to

sphere (2), denoted F1;2, results in a small outward com-

ponent Fout, which can be calculated as

F1;2 ¼ 1

3

ðFacc þ FbÞ
cosð#1;2Þ ; (2)

Fout ¼ F1;2 sinð#1;2 � #2;3Þ: (3)

For sufficiently large Facc=Fb this force can not be com-
pensated by the buoyancy force Fb of sphere (2). Thus, we
can state that if Fout > Fb sinð#2;3Þ, sphere (2) is ejected

from the hcp pyramid. This leads to the following stability
criterion for the hcp pyramid:

Facc

Fb

<
3 sinð#2;3Þ cosð#1;2Þ
sinð#1;2 � #2;3Þ � 1 � 2:0: (4)

That is, if Facc=Fb > 2:0, a hcp pyramid is mechanically
unstable. We proved this geometrical argumentation by
analyzing small hcp and fcc pyramids in numerical simu-
lations as well as in experiments. In the simulations, we
placed the pyramids on two layers of fixed spheres and
applied different tip forces Facc and drainage velocities v0.
The different regions of stability in relation to the normal-
ized drainage and tip force are shown in Fig. 3(b).
Obviously, the fcc pyramid can resist significantly larger
tip forces. Drainage decreases the stability of both pack-
ings by reducing the effective buoyancy force of sphere (2)
until the spheres start to float above v0=vref � 0:23. The
simulated maximum force Facc=Fb � 1:9, up to which the
hcp pyramid is stable in the absence of drainage is in good
agreement with Eq. (4). We have conducted these simula-
tions also with heavy spheres of density ratio �f=�p � 0:1,

yielding similar results.
For experimental investigations [21] we created small

monodispersed gas bubbles (D ¼ 0:9 mm) in soap solu-
tion (’’Dreft’’) and arranged small pyramids by fixing the
first layer in a purpose-shaped frame (triangular for fcc,
hexagonal for the hcp pyramid) [Fig. 3(c)]. Bubbles arrive
one by one at a frequency of 2:5=s from a nozzle which is
placed 4 mm below the pyramid. Facc in this case therefore
results from the combined buoyancy and inertial force of
an individual bubble arriving at the top of the pyramid. As
indicated in the image sequences of Fig. 3(c) and in [21],
we find that 90% of the fcc pyramids remain stable while in
the hcp configuration the arriving bubble always ejects and
replaces a bubble from the second layer. The ejected
bubble moves through a valley in the base layer, which is
oriented at 180� to the direction of force F1;2.

To follow such processes within much larger sphere
clusters, we analyze the rearrangement of spheres during
the compaction process in the full-scale simulations. In
plotting the angle of ejection �, Fig. 4(a) shows that
spheres in the third layer are regularly ejected from their
positions in the packing and that they move with roughly
equal probability through one of the three valleys created
by the second layer. To distinguish more accurately the
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type of rearrangements, Fig. 4(b) presents the relative
angle �� between the direction of ejection and the force
F1;2 exerted from a sphere in the fourth layer onto a sphere

in the third layer. �� ¼ 180� indicates rearrangement in
hcp packing, while�� ¼ 120� is a signature of rearrange-
ments in fcc packing. The dominance of hcp-type rear-
rangements is very clear, leading to the pronounced fcc
preference in the fourth layer.

In conclusion we propose that the following mechanism
may be at the origin of the repeated observation of a fcc
preference in a wide range of hard-sphere systems: During
the packing process, small fcc and hcp elements continu-
ously form with equal probability. However, under the
impact of newly arriving spheres, the hcp elements are
destroyed more frequently than the fcc elements due to
their lower mechanical stability. This argument may play a
central role in any packing process which provides suffi-
cient activation forces, time, and room for such rearrange-

ments to occur. It may therefore also explain why the
question of fcc dominance is so dependent on the type of
sphere system and its packing history [10]. Full-blown
simulations, like the ones performed in the present study,
should not be necessary to evidence this phenomenon. In
our case, we needed the presence of the fluid in order to
discard some of the regularly raised hydrodynamic argu-
ments for a fcc preference. Up until now we have not
discussed the influence of tangential friction between the
spheres, composed of fluid friction and static friction
directly between the spheres. Fluid friction only acts on
moving spheres and therefore cannot stabilize a statically
unstable configuration. However, it may significantly slow
down the ejection of sphere (2) and therefore influence the
final fcc preference due to the packing dynamics. Static
friction, on the other hand, could counter Fout and thus
stabilize both packings. This should be the case, in par-
ticular, for solid grains and could be overcome by shaking
[9] or shear [11]. We have done very simple experiments
on pyramids of metal spheres [21] with tangential friction.
We find that a fcc pyramid can stand Facc=Fb � 1500
while a hcp pyramid collapses at Facc=Fb � 15. As far as
we are aware, the significant difference of the mechanical
stability of fcc and hcp elements has never been evoked in
the literature. The importance of this fact may well go
beyond questions of fcc preference and it may turn the
packing of spheres more into a science than an art.
We acknowledge Tobias Kempe and Stephan Schwarz

for their contribution to the development of the code
PRIME, Dominique Langevin for facilitating a one-year

FIG. 3. (a) Geometrical situation and force transfer in fcc and
hcp with coloring as in Fig. 1. (b) Stability map of the fcc and
hcp pyramid under tip force and drainage. (c) Experimental
observation of stable fcc and the rearranging hcp pyramids of
bubbles.

FIG. 4. (a) Frequency of occurrence of the angle between the x
direction and path of permanently ejected spheres (dashed
arrow) in layer three. The three dominant angles correspond to
the three valleys in layer two, identified by three dotted arrows.
(b) Frequency of occurrence of the angle between the ejecting
path (dashed arrow) and direction of force (dash-dotted arrow)
exerted from the sphere from the fourth layer on the ejected
sphere in the third layer.
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stay for S. Heitkam in her group where part of this work
was performed, as well as D. Weaire, S. Hutzler, and
R. Höhler for many fruitful discussions. This work was
financed by a DFG grant (SFB609) and by the French
Ministry of Foreign and European Affairs (‘‘Eiffel’’
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