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Using confocal microscopy, we study the flow of a model soft glassy material: a concentrated emulsion.

We demonstrate the micro-macro link between in situ measured movements of droplets during the flow

and the macroscopic rheological response of a concentrated emulsion, in the form of scaling relationships

connecting the rheological ‘‘fluidity’’ with local standard deviation of the strain-rate tensor. Furthermore,

we measure correlations between these local fluctuations, thereby extracting a correlation length which

increases while approaching the yielding transition, in accordance with recent theoretical predictions.
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Amorphous materials are abundant in nature and also of
great significance in industrial applications [1]. They only
flow on applying an external stress exceeding the yield
stress [2,3]. At this stage, a global picture describing the
mechanisms at the origin of the flow starts to emerge [4,5].
In these jammed systems, flow occurs through a succession
of elastic deformations and local irreversible plastic rear-
rangements associated with a microscopic yield stress
[6–9]. The number of plastic rearrangements by unit time
measures the fluidization of the system and increases as a
function of the local applied shear stress. More strikingly, it
is expected to exhibit nonlocality, and the rate of events
depends upon the behavior of the neighborhood of a given
zone—the rate is higher in the vicinity of an active zone, as
compared to its value near a quieter one [8,10]. This
cooperative behavior is due to the nonlocal elastic relaxa-
tion of the local shear stress after a plastic event, which
induces an increase of the local stress in a zone close to an
event [8,10]. Using such a model [8], some anomalous
rheological behavior observed in the microfluidic flow of
emulsions [5] could be explained and a correlation length
could also be extracted by fitting the measured velocity
profiles, evidencing the cooperative nature of flow. At this
stage, what is missing is direct evidence of the link
between the rheological fluidity of the system—here
defined as the inverse viscosity, i.e., the ratio of shear
rate to stress—and the locally occurring dynamical fluctu-
ations that reflect the number of plastic events by unit time.

In this Letter, using dynamic confocal microscopy, we
zoom down to the microscopic length scales to study the
link between macroscopic rheology and local dynamical
fluctuations in soft glassy systems. We focus, in particular,
on the flow behavior of highly jammed systems when
approaching the yielding threshold from above—i.e., at
finite shear rates above the quasistatic regime. We demon-
strate that there exists a scaling relationship between the
fluidity and local strain-rate fluctuations. We quantify the
correlations among the locally occurring fluctuations and

we measure a corresponding correlation length which is
measured to increase with decreasing strain rates.
Our experimental system is a concentrated, optically

transparent emulsion of silicone oil droplets (polydimethyl
siloxane of viscosity 1000 Pa � s) in a mixture of 50%
water, 50% glycerol, surfactant (tetradecyl ammonium
bromide), and rhodamine. The viscosity of the continuous
phase is 10�2 Pa � s. The surface tension between oil and
the continuous phase is 8 mN=m. The surfactant concen-
tration within the aqueous phase is set to 1% in weight in
order to ensure a good stability of the emulsion. It is high
enough to prevent coalescence and low enough to avoid
flocculation by depletion force, so that the emulsion is
nonadhesive. The mean radius of the emulsion defined as

R32 ¼ hR3i
hR2i is 7:5 �m. The size distribution is log normal,

and the standard deviation is �R32=R32 ¼ 0:50. The emul-
sion is polydisperse, which avoids crystallization in the
bulk and near the surfaces. The volume fraction of the
emulsion is �� 0:75, well above the jamming volume
fraction �J � 0:65. The macroscopic flow curves are
determined by measurements in a rough cone-plate
rheometer. It is well-described by a Herschel-Bulkley law
� ¼ �c½1þ ð� _�Þn�, with the values �c ¼ 31 Pa, n ¼ 0:5,
and � ¼ 1= _�c ¼ 2:5 s. Neither aging nor dependence of
the rheology on the flow history were evidenced.
We study the flow of emulsions in a homemade glass

microdevice (Fig. 1), with a rectangular cross section
(height h ¼ 1 mm, width w ¼ 225 �m, and length
L ¼ 57:5 mm). This is made by gluing two glass slides
(1 mm thick) to a bottom glass slide with an optical
adhesive (NOA 81, Norland Products) to form a straight
channel of controlled width w ¼ 225 �m [11]. The con-
fining surfaces are rough, with a characteristic length scale,
typically in the range of 1 �m. The flow is then controlled
by applying a given pressure drop between the access
holes. Rhodamine is added to the emulsion, which allows
us to visualize the droplets using a confocal micro-
scope (Zeiss LSM 5 Live) with an objective 40�

PRL 108, 148301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 APRIL 2012

0031-9007=12=108(14)=148301(5) 148301-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.148301


ðconfocal volume of 1:4 �m3Þ. From the recorded
images, both the average velocity field and the local
instantaneous strain rate are measured. To this end, images
of the flow in the velocity (x direction) and in the gradient
velocity plane (y direction) are taken line by line. The
velocity direction and the scan direction are perpendicular.
In those conditions, the delay time between two frames
is 600 times higher than the scan time of one line, allowing
a perfect determination of the displacements. The delay
time between two frames varies between 0.2 to 0.016 s.
The map of local displacement between two frames
ðexðx; y; tÞ; eyðx; y; tÞÞ is calculated on a square grid with a

mesh size of 3:5 �m. The intensity cross correlation for
consecutive images is calculated for variable translations
dx and dy along the flow (MATLAB procedure). The maxi-
mum of the intensity correlation (plus the shift) corre-
sponds to a local displacement between the two frames
ðexðx; y; tÞ; eyðx; y; tÞÞ. The microfluidic device is placed on

a translation slider, moving in the opposite direction of
the flow, with a velocity tuned as a function of the drop
of pressure. The particles remain under the same light,
which enhances the quality of the correlation procedure.
From these values, we compute the instantaneous shear
rate _�iðx; yÞ ¼ ðexðx; y; tÞ � exðx; yþ dy; tÞÞ=ðdt � dyÞ and
instantaneous velocity field—vxðx; y; tÞ ¼ exðx; y; tÞ=dt,
vyðx; y; tÞ ¼ eyðx; y; tÞ=dt. The mean velocity VxðyÞ is

obtained by performing the same procedure on rectangular
zones of length 300 �m (in the x direction) and width
4:5 �m (in the y direction). This procedure allows us to
measure displacement as low as 0:1 �m (using a subpixel
fit). In the moving frame, the displacement of the particles
is around 5 �m. The systematic error on the velocity is
thus around 2%. In the following, error bars will reflect
statistical error and correspond to the mean deviation of the
measurement.

Measurements are performed in a plane at a sufficient
height z; z ¼ 350 �m in the vorticity direction above the
bottom of the channel, so that the velocity profile is inde-
pendent of this distance (see the Supplemental Material for
Fig. S1 [12]). Under this assumption, our microchannel can
be well approximated by two infinite parallel planes: the

main streamlines are aligned with the x direction of the
channel, along the applied pressure gradient. The local
shear stress then depends linearly on the position in the y

direction: �ðyÞ ¼ �P�y
L , with �P the pressure drop, L the

channel length, and y the distance from the center of the
channel.
Figure 2 displays the velocity profile in the moving

frame. As shown in Fig. 2, profiles are merely pluglike,
as generally expected for a yield stress fluid. We have also
observed that the spatial profiles of the volume fraction
across the width of the channel are flat and found as
previously [13] that no droplet migration occurs in this
geometry. This observation discards the possibility of the
spatial variations of the volume fraction as a source of
inhomogeneity for this system.
In order to characterize the local dynamical agitation in

the system, we focus on the measurement of the standard
deviation of the local shear rate h� _�iðx; yÞi, defined as

h� _�iðx; yÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih _�iðx; yÞ2i � h _�iðx; yÞi2

p
. In Fig. 3, we rep-

resent the spatial profile of h� _�iiðyÞ for different external
forcing. Values are averaged over x along the channel
length, at a given position y, and over the time.
A first observation is that, while the maximum fluctua-

tions do occur near the walls, fluctuations are nonvanishing
across the whole channel, even for regions close to the
center where the local shear stress �ðyÞ becomes less than
the macroscopic yield stress �c. Moreover, the values in
the center depend upon the forcing but not simply upon the
local shear stress. This point is striking and shows that
fluidization occurs for shear stress below the macroscopic

FIG. 2 (color online). Experimental average velocity profiles
in the moving frame. From bottom to top, �max=�c ¼
2:53; 3:54; 4:55; 6:07; 7:59; 9:10. The lines correspond to the
velocity profiles calculated assuming that the fluidity is propor-
tional to the standard deviation of the strain rate (see text). The
error bars correspond to the mean deviation of the measurements
(i.e., standard deviation divided by the square root of the
measurement number).
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FIG. 1 (color online). Schematic diagram of the experimental
device.
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yield stress in this geometry, suggesting that the presence
of a sheared active region somewhere in the channel modi-
fies the properties of the sample far away from the active
region. A similar conclusion was reached for the slow flow
of granular materials, where the activated nature of the
flow process was evidenced [14]. This also echoes the
recent experiment carried out by the Leiden group [15]:
in this study, a steel ball resting on a bucket of sand was
observed to sink as soon as a shear band was created at the
bottom of the bucket, far away from the ball.

To get further insights, we explore the link between the
measured velocity fluctuations and the rheological fluidity,
as shown in Fig. 3. The local fluidity fðyÞ is extracted from
the knowledge of the local mean shear rate _�ðyÞ and local
shear stress �ðyÞ; fðyÞ ¼ _�ðyÞ=�ðyÞ. The local shear rate
_�ðyÞ is obtained by taking the derivative (finite derivative)
of the velocity profiles, and the local shear stress is related
to the position in the gap y by the mechanical equilibrium

relation �ðyÞ ¼ �P
L � y.

A key finding emerging from this plot is that all data for
different external forcing collapse on a linear master
curve: a linear relation is found between the standard
deviation of the local shear rate and the fluidity, h� _�ii�
ðyÞ / fðyÞ. In contrast, no such rescaling is found in the
plot of the shear-rate rms fluctuations versus the local shear
rate; see the inset of Fig. 4, which demonstrates that the
fluidity is indeed the relevant physical quantity here and
not the local shear rate. To assess further the validity and
robustness of the previous scaling law, we use the linear
relation between h� _�ii and fðyÞ in order to rebuild the

velocity profiles from the measurements of the fluctua-
tions: using h� _�iiðyÞ ¼ AfðyÞ=fc (with A a numerical
prefactor and fc ¼ ð��cÞ�1 a characteristic fluidity
obtained from the Herschel-Bulkley fit), one expects

VxðyÞ � Vxð0Þ ¼
Ry
0
fc
A h� _�ii �PL ydy. As shown in Fig. 2,

the experimental velocity profiles are perfectly captured
by this relation. Note that a single fitting parameter A
allows us to describe all the profiles which are obtained
using the raw data. By using a more monodisperse emul-
sion [16], we note that the polydispersity of the material
does not affect the main result above, i.e., the intimate
relationship between fluctuations and fluidity; see the
Supplemental Material [12].
These observations show that the extent of fluidization is

determined by local shear-rate fluctuations. We note that
this result echoes the anomalous scaling of the velocity
fluctuations versus shear rate reported for granular materi-
als [17]. In these systems, the velocity fluctuations are
often considered to be one of the measures of an effective
granular temperature [17], and, for simulations of sheared
soft disks at finite temperatures [18], a similar link between
effective temperature and viscosity has been observed.
With these measurements, we are able for the first time

to directly connect the microscopic to the macroscopic
rheological behavior. The standard deviation of the local
shear rate is local information, but the movement of a
droplet can promote another one in its vicinity. To charac-
terize the flow heterogeneity, we explore the spatial
variation of these motions. In a first step, we consider the
decay length �v of the shear-rate fluctuation profile,

FIG. 3 (color online). Spatial profile of the rms deviation of

shear rate, h� _�iiðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� _�2

i iðyÞ
q

. The forcing increases from

bottom to top, with �max=�c ¼ 2:53; 3:54; 4:55; 6:07; 7:59; 9:10.
The lines correspond to hyperbolic cosine functions used to
extract the correlation lengths (see text).

FIG. 4 (color online). Scaling of the local shear-rate rms
fluctuation h _��ii in s�1, with dimensionless fluidity fðyÞ ¼
_�ðyÞ=�ðyÞ (same symbols as in Fig. 3). Fluidity is rescaled by
fc ¼ ð��cÞ�1, using Herschel-Bulkley parameters, measured
independently using bulk rheometry. The line corresponds to
the linear law h� _�ii ¼ AfðyÞ=fc, with A ¼ 29 s�1. Inset:
h� _�iiðyÞ in s�1 as a function of the mean local shear rate
normalized by the characteristic time � ¼ 2:5 s. Same symbols
as in Fig. 3.
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h _��iiðyÞ, as in Fig. 3. To quantify further this behavior, the
central part of the profile is fitted by a hyperbolic cosine
function coshðy=�Þ, from which the decay length � is

extracted. This fitting model for h _��iiðyÞ is actually
inspired by our previous work [5,8], where fluidity was

shown to obey a nonlocal equation �2 @2f
@2y

þ f� fbð�Þ ¼
0; � is the cooperativity length, and fbð�Þ is the fluidity in
wide geometry under constant shear stress and thus van-
ishes for stresses lower than the yield stress �c, i.e., close

to the center of the slab. As h _��iiðyÞ is found to be
proportional to the fluidity—see Fig. 4—we assume that,
for stress smaller than the yield stress, it follows that

�2
v
@2h� _�ii
@2y

þ h� _�ii ¼ 0. As shown in Fig. 2, this equation

provides a very good fit for the experimental data for the

shear-rate fluctuation profile h _��iiðyÞ for �ðyÞ< 2�c. In
Fig. 5, the results for �v are plotted as a function of the
mean shear rate _�, calculated by averaging the local shear
rate _�ðyÞ over the space in the fitted zone [i.e., for y,
verifying �ðyÞ< 2�c]. The correlation length is shown
to increase as the shear rate decreases. In Ref. [8], we
predicted a power-law divergence for the fluidity correla-
tion length in the form �� _���, with� ¼ 1=4. The results
in Fig. 5 confirm a similar slow increase of the correlation
length as the shear rate goes to zero, and this predicted
power-law divergence gives a fair description of this
diverging behavior.

In a second step, we considered an alternative
correlation length in the material, by measuring the
nonaffine velocity correlation function Gyðx; yÞ ¼
hvyð0; yÞvyðx; yÞit, where hit implies a temporal average;

vyðx; yÞ is the instantaneous velocity map. In a Poiseuille

flow, the local strain rate, _�ðyÞ, depends on the distance y
from the center of the channel, and this allowed us to
explore the decay length of Gyðx; yÞ along x for a given

shear rate _�ðyÞ. A correlation length, �g, is accordingly

extracted from the spatial decay of Gyðx; _�Þ [using the

criteria Gyðx ¼ �gÞ ¼ e�1]. In Fig. 5, we show the varia-

tion of �g with _�, collecting data for different external

forcings. A key feature of this plot is that we observe a
collapse of the data points on a master curve for various
imposed forcings, in a strain-rate window spanning over
more than two decades. Furthermore, this figure shows
that the correlations again significantly increase as _�
decreases. Although �g differs from the previously

defined lengths (� and �v), this result suggests the
increase of cooperativity close to yielding. The extracted
length scale grows roughly logarithmic with shear rate or
as with a power law with a small exponent. This result
echoes the results on soft spheres where an exponent of
�0:3 was observed [19].
In conclusion, we have demonstrated the link between

macroscopic forcing and the local dynamical fluctuations
in the form of a scaling relationship between fluidity and
velocity fluctuations. Moreover, we observe correlations
among these local fluctuations, with the measured correla-
tion length scale increasing with decreasing strain rates, as
predicted by theoretical models. The mechanical noise
induced by the flow itself is the source of nonlocality.
The occurrence of cooperativity in the rheological proper-
ties in the jammed regime echoes the recent evidence for a
nonlocal anomalous behavior of the viscosity in the super-
cooled regime, furthermore in direct connection to
dynamic heterogeneities [20].
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