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We present a systematic theoretical study of the BCS-BEC crossover in two-dimensional Fermi gases

with Rashba spin-orbit coupling (SOC). By solving the exact two-body problem in the presence of an

attractive short-range interaction we show that the SOC enhances the formation of the bound state: the

binding energy EB and effective massmB of the bound state grows along with the increase of the SOC. For

the many-body problem, even at weak attraction, a dilute Fermi gas can evolve from a BCS superfluid

state to a Bose condensation of molecules when the SOC becomes comparable to the Fermi momentum.

The ground-state properties and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature are

studied, and analytical results are obtained in various limits. For large SOC, the BKT transition

temperature recovers that for a Bose gas with an effective mass mB. We find that the condensate and

superfluid densities have distinct behaviors in the presence of SOC: the condensate density is generally

enhanced by the SOC due to the increase of the molecule binding; the superfluid density is suppressed

because of the nontrivial molecule effective mass mB.
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It has been widely believed for a long time that a smooth
crossover from Bardeen-Cooper-Schrieffer (BCS) super-
fluidity to Bose-Einstein condensation (BEC) of molecules
could be realized in an attractive Fermi gas [1–3]. This
BCS-BEC crossover phenomenon has been successfully
demonstrated in ultracold fermionic atoms by means of the
Feshbach resonance [4]. Some recent experimental efforts
in generating synthetic non-Abelian gauge field have
opened up the opportunity to study the spin-orbit coupling
(SOC) effect in cold atomic gases [5]. For fermionic atoms
[6], it provides an alternative way to study the BCS-BEC
crossover [7] according to the theoretical observation
that novel bound states in three dimensions can be induced
by a non-Abelian gauge field even though the attraction is
weak [8,9].

Recently, the anisotropic superfluidity in 3D Fermi gases
with Rashba SOC has been intensively studied [10–12].
Two-dimensional (2D) fermionic systems with Rashba
SOC is more interesting for condensed matter systems
[13] and topological quantum computation [14]. By
applying a large Zeeman splitting, a non-Abelian topologi-
cally superconducting phase and Majorana fermionic
modes can emerge in spin-orbit coupled 2D systems [14].
In the absence of SOC, the BCS-BEC crossover and
Berezinskii-Kosterlitz-Thouless (BKT) transition tempera-
ture in 2D attractive fermionic systems were investigated
long ago [15,16] (see [17] for a review), which provide a
possible mechanism for pseudogap formation in high-
temperature superconductors [18].

In this Letter we present a systematic study of 2D
attractive Fermi gases in the presence of Rashba SOC.
The main results are summarized as follows: (i) The
SOC enhances the difermion bound states in 2D. At large

SOC, even for weak intrinsic attraction, the many-body
ground state is a Bose-Einstein condensate of bound mole-
cules. In the presence of a harmonic trap, the atom cloud
shrinks with increased SOC. (ii) The BKT transition tem-
perature is enhanced by the SOC at weak attraction, and for
large SOC it tends to the critical temperature for a gas of
molecules with a nontrivial effective mass. The SOC effect
therefore provides a new mechanism for pseudogap for-
mation in 2D fermionic systems. (iii) In the presence of
SOC, the superfluid ground state exhibits both spin-singlet
and spin-triplet pairings, and the triplet one has a nontrivial
contribution to the condensate density. In general, the
condensate density is enhanced by the SOC due to the
increase of the molecule binding. However, the superfluid
density has entirely different behavior: it is suppressed by
the SOC due to the increasing molecule effective mass.
Model and effective potential.—A quasi-2D Fermi gas

can be realized by arranging a one-dimensional optical
lattice along the axial direction and a weak harmonic
trapping potential in the radial plane, such that fermions
are strongly confined along the axial direction and form a
series of pancake-shaped quasi-2D clouds [19–21].
The strong anisotropy of the trapping potentials, namely
!z � !? where !z (!?) is the axial (radial) frequency,
allows us to use an effective 2D Hamiltonian to deal with
the radial degrees of freedom.
The Hamiltonian of a spin-1=2 attractive Fermi gas with

Rashba SOC is given by H ¼ R
d2r �c ðrÞðH 0 þ

H soÞc ðrÞ �U
R
d2r �c "ðrÞ �c #ðrÞc #ðrÞc "ðrÞ, where c ¼

½c "; c #�T represents the two-component fermion fields,

H 0 ¼ � @
2r2

2m ��� h�z is the free single-particle

Hamiltonian with � being the chemical potential and h
the Zeeman splitting, and H so ¼ �i@�ð�x@y � �y@xÞ is
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the Rashba SOC term [22]. Here �x;y;z are the Pauli ma-

trices which act on the two-component fermion fields. The
short-range attractive interaction is modeled by a contact
coupling U [23]. In the following we use the natural units
@ ¼ kB ¼ m ¼ 1.

In the functional path integral formalism, the partition
function of the system is Z ¼ R

DcD �c expf�S½c ; �c �g,
where S½c ; �c � ¼ R�

0 d�½
R
d2r �c @�c þHðc ; �c Þ� with

the inverse temperature � ¼ 1=T. Introducing the
auxiliary complex pairing field �ðxÞ ¼ �Uc #ðxÞc "ðxÞ
½x ¼ ð�; rÞ� and applying the Hubbard-Stratonovich trans-

formation, we arrive at Z¼R
D�D ��D�D��expf12�R

dx
R
dx0 ��ðxÞG�1ðx;x0Þ�ðx0Þ�U�1

R
dxj�ðxÞj2g, where

� ¼ ½c ; �c �T is the Nambu-Gor’kov spinor. The inverse
single-particle Green function G�1ðx; x0Þ is given by

G�1 ¼ �@� �H 0 �H so i�y�ðxÞ
�i�y�

�ðxÞ �@� þH 0 �H �
so

 !

� �ðx� x0Þ: (1)

Integrating out the fermion fields, we obtain Z ¼R
D�D�� expf�Seff½�;���g, where the effective action

reads Seff½�;���¼U�1
R
dxj�ðxÞj2� 1

2 Tr ln½G�1ðx;x0Þ�.
Two-body problem.—The exact two-body problem at

vanishing density can be studied by considering the
Green function �ðQÞ of the fermion pairs, where Q ¼
ði�n;qÞ with �n ¼ 2n�T (n integer) being the bosonic
Matsubara frequency. In the present formalism, ��1ðQÞ
can be obtained from its coordinate representation
defined as ��1ðx;x0Þ¼ ð�VÞ�1�2Seff½�;���=½���ðxÞ
��ðx0Þ�j�¼0. For � ¼ 0, the single-particle Green func-
tion reduces to its noninteracting form G0ðKÞ ¼
diag½gþðKÞ; g�ðKÞ� with g�ðKÞ ¼ ½i!n � ð	k � h�zÞ �
�ð�xky � �ykxÞ��1, where K ¼ ði!n;kÞ with !n ¼
ð2nþ 1Þ�T being the fermionic Matsubara frequency.
Here 	k ¼ 
k �� and 
k ¼ k2=2. The single-particle

spectrum generally has two branches: !�
k ¼ 	k �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2k2 þ h2
p

.
After the analytical continuation i�n ! !þ i0þ, the

real part of ��1ðQÞ takes the form

��1ð!;qÞ¼ 1

U
� X

�;�¼�;k

1�fð!�
kÞ�fð!�

pÞ
4ð!�

kþ!�
p�!Þ ð1þ��T kqÞ;

(2)

where fðEÞ ¼ 1=ðe�E þ 1Þ is the Fermi-Dirac
distribution function, and T kq¼ð�2k �pþh2Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2k2þh2Þð�2p2þh2Þp

with p ¼ kþ q. ��1 takes the
form similar to that of the relativistic systems [24], due to
the fact that H so behaves like a Dirac Hamiltonian. Since
in 2D the bound state forms for arbitrarily small attraction
[25], the contact coupling U can be regularized by the
two-body problem at vanishing SOC, U�1 ¼ P

kð2
k þ

BÞ�1 [15,17], where 
B is the binding energy at vanishing
SOC. This equation recovers the exponential behavior


B ¼ 2� expð�4�=UÞ in 2D [26], where � � 
B is
an energy cutoff. All physical equations are finally UV
convergent in terms of 
B and we set � ! 1 in the
dilute limit.
From now on we consider the case h ¼ 0. The binding

energy EB at nonzero SOC is determined by the solution of
!þ 2� ¼ �EB for ��1ð!;q ¼ 0Þ ¼ 0. From the imagi-
nary part of ��1ðQÞ, the bound state corresponds to the
solution in the regime �1<!þ 2�<��2 and hence
EB > �2. Completing the momentum integrals analyti-
cally, we obtain a simple algebraic equation for EB [27],

ln
EB


B
¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EB � �2
p arctan

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB � �2

p : (3)

The solution can be generally expressed as EB ¼

B þ 4
Jð
=
BÞ where 
 ¼ �2=2. For 
 	 
B, we
have J ’ 1 and EB is well given by EB ’ 
B þ 2�2. For

=
B ! 1, the solution approaches very slowly to the
asymptotic result EB ’ �2. In general, EB increases with
increased SOC, as shown in Fig. 1. It is straightforward to
show that the bound state contains both spin-singlet and
triplet components [8].
For small nonzero q, the solution for! can be written as

!þ 2� ¼ �EB þ q2=ð2mBÞ, where mB is the molecule
effective mass. Substituting this dispersion into the equa-
tion ��1ð!;qÞ ¼ 0 we obtain [27]

2m

mB

¼ 1� 1

2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p � ð�� 2Þð�2 � arctan ��2
2
ffiffiffiffiffiffiffi
��1

p Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p þ ð�2 � arctan ��2
2
ffiffiffiffiffiffiffi
��1

p Þ ; (4)

where � ¼ EB=�
2. For � ! 0, we obtain the usual result

mB ! 2m. For � ! 1, we have EB ! �2 and mB ap-
proaches the asymptotic result 4m. In general, mB is larger
than 2m, as shown in Fig. 1. Together with the result for
EB, we conclude that a novel bound state (referred to as
rashbon [10]) forms. It would have significant impact on
the many-body problem discussed in the following.
Ground state.—For the many-body problem, we con-

sider a homogeneous Fermi gas with fixed fermion density
n ¼ N=V. For convenience, we define the Fermi momen-
tum via n ¼ k2F=ð2�Þ and Fermi energy by 
F ¼ k2F=2. The
ground state (T ¼ 0) can be studied in the self-consistent
mean-field theory, where we replace the pairing field � by

0 50 100
0

50

100

150

200

250

η/ε
B

E
B
/ε

B

0 50 100
1

1.1

1.2

1.3

1.4

1.5

1.6

η/ε
B

m
B
/(

2m
)

FIG. 1. The binding energy EB (left, divided by 
B) and the
effective mass mB (right, divided by 2m) as functions of 
=
B.
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its expectation value h�i ¼ �. Without loss of generality,
we set � to be real.

The mean-field ground-state energy �¼Seff½�;��=
ð�VÞ can be evaluated as � ¼ �2=Uþ ð1=2ÞPkð2	k �
Eþ
k � E�

k Þ, where E�
k ¼ ½ð	�

k Þ2 þ�2�1=2 are the quasipar-
ticle excitation energies with 	�

k ¼ 	k � �jkj. According
to the equation that EB satisfies,� can be evaluated as�¼
�2Dð�;�;
BÞþ��, where �2Dð�; �; 
BÞ ¼ ð�2=4�Þ �
fln½ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p � �Þ=
B� � 1=2 � �=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p � �Þg

is formally the ground-state energy for vanishing SOC

[15,17], and �� ¼ �ð�=2�ÞR�
0 dk½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið	k � 
Þ2 þ�2
p �

ð	k � 
Þ� is the contribution due to the SOC effect.
From the explicit form of the ground-state energy, the

gap and number equations can be expressed as

½�2 þ �2�1=2 �� ¼ 
B exp½2I1ð�=
;�=
Þ�;
½�2 þ �2�1=2 þ� ¼ 2
F � 2
½1� I2ð�=
;�=
Þ�;

(5)

respectively. Here the functions I1 and I2 are defined as

I1ða; bÞ ¼
R
1
0 dx½ðx2 � 1� aÞ2 þ b2��1=2 and I2ða; bÞ ¼R

1
0 dxðx2 � 1� aÞ½ðx2 � 1� aÞ2 þ b2��1=2. I1, I2, and

�� can be analytically evaluated using the elliptic func-
tions. For vanishing SOC, we recover the well-known
analytical results, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
B
F
p

and � ¼ 
F � 
B=2 [15].
Now let us start from weak attraction, 
B 	 
F. For

sufficiently small SOC, we have I1 ! 0 and I2 ! �1,
and the solution is well approximated by � ’ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
B
F
p

and � ’ 
F � 
B=2� 2
, which indicates a BCS super-
fluid state. For large SOC, we expect that � becomes
negative and j�j � �. Substituting this into the gap
equation, we find � ’ �EB=2, which indicates a Bose-
Einstein condensate of molecules with binding energy
EB. Then expanding the number equation in powers of

�=j�j and keeping the leading order, we obtain � ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EB
F�ð�Þ

p
, where �ð�Þ¼2��1ð��1Þ3=2ð2 ffiffiffiffiffiffiffiffiffiffiffi

��1
p þ�

2�
arctan ��2

2
ffiffiffiffiffiffiffi
��1

p Þ�1. This is a transparent formula to show that

the pairing gap� increases with increased SOC, consistent
with the perturbative approach [28]. These analytical
results are in good agreement with the numerical results
shown in Fig. 2 even for intermediate �=kF [29].

Using the fermion Green function GðKÞ, we can show
that the fermion momentum distribution nðkÞ is isotropic
and can be expressed as nðkÞ ¼ ð1=4ÞP�ð1� 	�

k =E
�
k Þ

[27]. As shown in Fig. 3, with increased SOC, the distri-
bution broadens, which indicates a BCS-BEC crossover.
The new feature here is that the distribution generally
displays nonmonotonic behavior. The peak in the distribu-
tion is just located at k ¼ �.

The pair wave functions���0 ðkÞ 
 hc k�c�k�0 i can be
evaluated as�""ðkÞ ¼ �ði�=4Þei�kP��=E

�
k and�"#ðkÞ ¼

�ð�=4ÞP�1=E
�
k, where e

i�k ¼ ðkx þ ikyÞ=jkj. Therefore,
the superfluid state exhibits both singlet and triplet pairings
for nonzero SOC. The numerical results for the ratio
j�""ðkÞj=j�"#ðkÞj displayed in Fig. 3 show that the

triplet pairing spreads to wider momentum regime

with increased SOC. According to the general formula
for the condensate number of fermion pairs [30], N0¼
1
2

P
�;�0

RR
d2rd2r0jhc �ðrÞc �0 ðr0Þij2, the condensate density

reads n0 ¼
P

k½j�"#ðkÞj2 þ j�""ðkÞj2�. The triplet pairing

amplitude contributes, in contrast to the fermionic super-
fluids with only singlet pairing [31]. For large SOC, we

find analytically that 2N0=N ¼ 1�Oð �4

j�j4Þ ! 1 (see also

Fig. 3), which indicates the Bose-Einstein condensation of
weakly interacting rashbons.
In the presence of a trap potential VðrÞ ¼ 1

2!
2
?r

2, the

chemical potential becomes �ðrÞ ¼ �0 � VðrÞ and the
density distribution nðrÞ can be solved from the constraint
N ¼ 2�

R
rdrnðrÞ in the local density approximation. As

shown in Fig. 4, the atom cloud shrinks with increased
SOC, which can be viewed as a preliminary experimental
signal of the BCS-BEC crossover.
BKT transition temperature.—At finite temperature in

2D we should rewrite the complex ordering field �ðxÞ in
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terms of its modulus �ðxÞ and phase �ðxÞ, i.e., �ðxÞ ¼
�ðxÞ exp½i�ðxÞ�. Since the random fluctuations of the phase
�ðxÞ forbid long-range order in 2D, we have h�ðxÞi ¼ 0
but h�ðxÞi � 0 at T � 0. However, Berezinskii [32] and
Kosterlitz and Thouless [33] showed that below a critical
temperature TBKT, there exist bound vortex-antivortex
pairs and quasi-long-range order remains.

To determine the BKT transition temperature, we derive
an effective action for theUð1Þ phase field �ðxÞ. To this end
we make a gauge transformation c ðxÞ ¼ exp½i�ðxÞ=2��ðxÞ
[16,17]. Then we arrive at the expression Z ¼R
�D�D� expf��Ueff½�ðxÞ; @�ðxÞ�g, where the effec-

tive action �Ueff½�ðxÞ; @�ðxÞ� ¼ U�1
R
dx�2ðxÞ �

1
2 Tr lnS

�1½�ðxÞ; @�ðxÞ� now depends on the modulus-

phase variables. The Green function of the initial
(charged) fermions takes a new form S�1½�ðxÞ;@�ðxÞ�¼
G�1½�ðxÞ���½@�ðxÞ�. Here G�1½�ðxÞ�¼G�1½�ðxÞ;
�ðxÞ� is the green function of the neutral fermion, and

�½@��
�3½i@��=2þðr�Þ2=8�� Î½ir2�=4þ ir� �r=2�þ
ð�=2Þ½�3�x@y�� Î�y@x��, where �iði ¼ 1; 2; 3Þ are the

Pauli matrices in the Nambu-Gor’kov space.
Since the low-energy dynamics for � � 0 is governed

by long-wavelength fluctuations of �ðxÞ, we neglect the
amplitude fluctuations and treat � as its saddle point value
[16,17]. Then the effective action can be decomposed as
Ueff½�ðxÞ; @�ðxÞ� ’ Ukin½�; @�ðxÞ� þUpotð�Þ. The po-

tential part readsUpot=V ¼ �2=UþP
k½	k �W ðEþ

k Þ �
W ðE�

k Þ� where W ðEÞ ¼ E=2þ T lnð1þ e��EÞ. The

kinetic part can be obtained by the derivative expansion
�Ukin½�; @�ðxÞ� ¼

P1
n¼1

1
n TrðG�Þn.

Keeping only lowest-order derivatives of �ðxÞ, we find
that the kinetic term Ukin coincides with the classical spin
XY model, which has the continuum Hamiltonian HXY ¼
1
2J

R
d2r½r�ðrÞ�2 where the phase stiffnessJ ¼ �s

4m and �s

is the superfluid density [34]. The superfluid density in our
model can be evaluated as �s ¼ n� �1 � �2, where
�1¼ð�=8�ÞP�¼�

R1
0 dk�ð	�

k þ�2=	kÞ½1�2fðE�
k Þ�=E�

k

and �2 ¼ �ð1=4�ÞP�¼�
R1
0 kdkðkþ ��Þ2f0ðE�

k Þ [27].

The BKT transition temperature is determined by TBKT ¼
�
2 J [32–35].

For sufficiently small 
B and SOC,� is correspondingly
small and TBKT recovers the mean-field result T�. On the
other hand, for large 
B and/or SOC, �s can be well
approximated by its zero-temperature value for T �
TBKT. We are interested in the case with small 
B and large
SOC. For large SOC, using the fact � 	 j�j, we find
analytically that [27]

�sðT 	 T�Þ ’ 2m

mB

n; J ðT 	 T�Þ ’ nB
mB

; (6)

where nB ¼ n=2 andmB is given by Eq. (4). Therefore, the
phase stiffness J naturally recovers that for a Bose (rash-
bon) gas at large SOC. The BKT transition temperature and
the phase stiffness jump �J reaches the rashbon limit
TBKT ¼ �nB=ð2mBÞ ¼ ð2m=mBÞ
F=8 and �J ¼ nB=mB.
To verify the above analytical results, we show the numeri-
cal results for �sðT ¼ 0Þ and TBKT in Fig. 5. Even for weak
attraction, a visible pseudogap phase appears in the win-
dow TBKT < T < T� for �� kF. The SOC therefore pro-
vides a new mechanism for pseudogap formation in 2D
fermionic systems.
Finally, we point out a surprising result, �s < n at

T ¼ 0, which is in contrast to the result �s ¼ n for fermi-
onic superfluids in the absence of SOC [34,36]. Actually, at
T ¼ 0, the superfluid density reads �s ¼ n� ��, where
the �-dependent term �� ¼ �1ðT ¼ 0Þ is always positive
and is generally an increasing function of �. Therefore, the
superfluid density shown in Fig. 3 has entirely different
behavior in contrast to the condensate density shown in
Fig. 5: it is generally suppressed by the SOC effect. The
exact two-body solution provides a very transparent expla-
nation to this suppression. At large SOC, the effective mass
mB > 2m is an increasing function of SOC and causes the
suppression of the superfluid density by a factor 2m=mB.
Our argument also applies to the suppression of the radial
(x� y plane) superfluid density �?

s for the 3D case [12],
where the radial effective mass m?

B is larger than 2m [10].
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reads RT ¼ ffiffiffiffiffiffiffiffi
2
F

p
=!?.
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FIG. 5 (color online). (a) The superfluid density �s at T ¼ 0
(divided by n) as a function of �=kF. The dashed lines represent
the results of 2m=mB calculated from Eq. (4). (b) The BKT
transition temperature as a function of �=kF. The dashed line
represents the rashbon limit and the dash-dotted line is the mean-
field result.
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Note added.—After finishing this Letter, we note that
similar results of the condensate density [12,38] and the
superfluid density [12] in spin-orbit coupled Fermi gases
are also reported.
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