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The autoresonant behavior of Langmuir waves excited by stimulated Raman scattering (SRS) is clearly

identified in particle-in-cell (PIC) simulations in an inhomogeneous plasma. As previously shown via a

3-wave coupling model [T. Chapman et al., Phys. Plasmas 17, 122317 (2010)], weakly kinetic effects such

as trapping can be described via an amplitude-dependent frequency shift that compensates the dephasing

of the resonance of SRS due to the inhomogeneity. The autoresonance (AR) leads to phase locking and to

growth of the Langmuir wave beyond the spatial amplification expected from Rosenbluth’s model in an

inhomogeneous profile [M.N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)]. Results from PIC simulations

and from a 3-wave coupling code show very good agreement, leading to the conclusion that AR arises

even beyond the so-called weakly kinetic regime.
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A nonlinear oscillator driven at a swept frequency may
undergo autoresonance (AR); under appropriate condi-
tions, the oscillation amplitude may automatically adjust
so as to maintain a frequency that is locked to the drive. AR
in plasmas has been considered in a variety of contexts, and
the exploitation of this phenomenon has a wide range of
applications of both fundamental [1,2] and practical inter-
est [3,4]. The impact of AR on scattering processes in
plasmas is an area of current research due to the possible
role played in inertial confinement fusion (ICF) experi-
ments [5]; in particular, stimulated Raman scattering (SRS)
has been identified as the most deleterious of the scattering
processes in current ICF experiments using hohlraums [6].
SRS in plasmas is the parametric excitation process in
which laser light scatters off of an electron density fluc-
tuation, leading to the growth of both the scattered light
and a Langmuir wave (LW) driven by the beating of the
laser with the scattered light. The plasma formed near the
walls of the hohlraum is steeply inhomogeneous [7], and
SRS is expected to be generated in this area, providing
conditions conducive to AR. This Letter describes the first
clear identification of autoresonance in SRS arising from
the kinetic effects of Langmuir waves, and it discusses its
importance with regards to the reflectivity.

In inhomogeneous plasmas, the laser wave drives reso-
nantly a spectrum of LW modes. So that AR may be
identified unambiguously and studied, we consider initially
a single Langmuir wave mode, driven by a pump (the laser
wave, propagating in the ‘‘forward’’ direction) and an
antiparallel seed (high-intensity scattered light, or a second
laser wave, propagating in the ‘‘backward’’ direction). The
pump of frequency and wave vector (!0; k0) encounters the
seed (!1; k1) in the inhomogeneous plasma. A forward-
propagating LW (!L; kL) may be resonantly driven
when the matching conditions !0 ¼ !1 þ!L and

k0 ¼ �k1 þ kL are satisfied locally (!0;1;L; k0;1;L > 0).
The frequencies !0;1 are chosen such that a LW is reso-

nantly driven at density n0 in a linear electron plasma
density profile ne ¼ n0½1þ ðx� xrÞ=L�, where xr is the
linear 3-wave resonance point. L parametrizes the inho-
mogeneity and can be positive (density increasing in the
forward direction, referred to as ‘‘positive density gra-
dient’’) or negative (density decreasing in the forward
direction, referred to as ‘‘negative density gradient’’).
While for clarity the density profile discussed here is linear,
AR may occur in a broad range of profiles and is subject to
remarkably few constraints [8].
In this Letter, we validate by means of particle-in-cell

(PIC) simulations that autoresonance in the kinetic regime

kL�D * 0:25 [9] can be correctly described [8] by simple

mode coupling equations in which the impact of electron

trapping on the Langmuir wave evolution is modeled by a

nonlinear frequency shift �!nl (�D denotes the usual

Debye length). This frequency shift depends on the square

root of the Langmuir wave envelope amplitude "L such

that �!nl / j"Lj1=2 [10,11]. Thus, starting from resonance

and "L � 0, the growth of "L and consequently of �!nl

will detune the 3-wave resonance determined by the fixed

laser frequencies !0;1 [12]. The three waves will undergo

an additional shift, this time in wave number, due to the

density inhomogeneity while propagating through the

plasma. The wave number shift will detune the LW from

the ponderomotive drive and, in the absence of nonlinear

effects, would saturate the parametric instability. However,

the LW may self-adjust "L in such a way that the nonlinear

component of its frequency �!nlðj"LjÞ cancels this shift in
wave number, as described in Ref. [8]. This phase locking

of the LW to the spatially detuned drive may result in "L
(and the scattered light) growing well beyond the level
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predicted by Rosenbluth [13] in the absence of kinetic
effects.

It is sufficient at this stage to write the equation govern-
ing the LW evolution under the conditions described pre-
viously as the following single wave envelope equation:

ð@t þ cL@x þ icL�
0ðx� xrÞ � i�j"Lj1=2Þ"L ¼ P; (1)

where @t and @x represent the partial derivatives of time
and space, respectively, �0 parametrizes the spatial wave
number detuning such that �0 ¼ @xðk0 � k1 � kLÞ �
!2

peðx ¼ xrÞ=6Lv2
thkL [14], and cL is the LW group veloc-

ity.!pe and vth denote the usual electron plasma frequency

and the electron thermal temperature, respectively.

The parameter � is such that �!nlðj"LjÞ ¼ ��j"Lj1=2,
with �> 0 [10]. Using the Poisson equation, the latter

relation can be equivalently written as �!nl=!L ¼
��nj�ne=n0j1=2, where �ne denotes the density perturba-
tion amplitude associated with the LWelectric field "L; �n

is given by �n � �ðn0e=�0kL!2
LÞ1=2, where �e is the

electron charge. The ponderomotive drive P represents
the coupling of the beating electromagnetic waves
to the LW.

During AR, the terms icL�
0ðx� xrÞ and i�j"Lj1=2 must

be approximately equal over an extended region in
space, with growth beginning at xr. This condition implies
cL�

0 > 0, or equivalently L > 0. Thus, AR requires a
positive density gradient and we expect in this case j"Lj �
ðcL�0=�Þ2ðx� xrÞ2, i.e., a parabolic spatial growth of the
LW from the point of resonance. The parabolic spatial
growth of the LW amplitude in a positive density gradient
is one of the key signatures of AR, and should be absent in
the negative density gradient cases. Under similar condi-
tions to those adopted in this Letter, Masson-Laborde et al.
found a good agreement, for the early SRS behavior,
between (i) a one-dimensional (1D) 3-wave coupling
model using a nonlinear frequency shift similar to ours
and (ii) both one-dimensional and two-dimensional (2D)
PIC simulations [15]. Thus, the early time SRS behavior
can be considered to be determined by 1D effects as long as
the Rayleigh length lR � 5f2#�0 is longer than the length
lAR of the spatial domain on which AR develops (f# and �0

denote the optics f number and the laser wavelength,
respectively). It will be found further on that for our
parameters lAR is in the order of 100–150�0, so that our
1D description of the early time behavior is valid for f
numbers larger than f# � 6. We therefore consider a 1D
problem, noting that AR is possible in higher-dimensional
problems [16]. Using the 1D PIC code EMI1D, we studied
the growth of the LW driven by counterpropagating
electromagnetic (EM) waves in an inhomogeneous plasma.
At time t ¼ 0, a pump wave [seed wave] is introduced
at the left-hand side (lhs) [right-hand side (rhs)] of
the simulation window in vacuo with intensity Ilhs ¼ 5�
1015 W=cm2 [Irhs ¼ 1� 1013 W=cm2]. The point of reso-
nance xr is xr � 78 �m, and the other parameters are the

laser wavelength �0 ¼ 351 nm, the electron temperature
Te ¼ 1 keV, and density n0=nc ¼ 0:05, nc denoting the
critical density. Across the region in which AR occurs in
this example, kL�D lies in the range 0:3< kL�D < 0:37,
while for the whole plasma, kL�D varies in the range
0:26< kL�D < 0:49.
In a positive density gradient [L ¼ þ100 �m, shown in

Fig. 1(a)], the driven LW front exhibits a significant spatial
growth as it propagates, while the LW amplitude remains
approximately constant over the region behind this wave
front (we attribute slow growth throughout the plasma to
other LW modes). This strong spatial growth is approxi-
mately parabolic over the distance lAR � 150�0, allowing
the LW to reach a significant amplitude after propagating
only a short distance from xr. The black dashed line in
Fig. 1(a) plots the LW amplitude expected by assuming
the exact cancellation between shifts, j"Lj ¼ ðcL�0=�Þ2 �
ðx� xrÞ2. Poisson’s equation leads then to the density
perturbation level j�ne=n0j ¼ �ðx� xrÞ2, with � �
ðcL�0=�n!LÞ2. This simple relation predicts with surpris-
ing accuracy the maximum instantaneous amplitude of the
LW. The values of the parameters in this relation and the
apparent offset of the point of initial growth from xr are
discussed later.
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FIG. 1 (color online). (a) Snapshots taken from PIC simula-
tions of the Langmuir wave envelope amplitude, driven by
counterpropagating EM waves in a plasma with a positive
density profile. (b) The envelope phase mismatch between the
EM waves and the Langmuir wave.
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We may assign phases �i to the envelopes of each wave
(defined later), relative to an arbitrary fixed value. The
difference of phases � ¼ �0 ��1 ��L between the
three waves is then an important quantity for identifying
AR: if the LW growth is autoresonant, � should perform
only small oscillations around a constant value [1] over a
region in space that lengthens at the speed at which the
front propagates. It is this phenomenon of phase locking
over a significant spatial extent that allows for the efficient
resonant transfer of energy between the three waves. In
Fig. 1(b), the phase of the LW is shown at a series of times,
exhibiting these key features of spatial AR.

The electron distribution function (EDF) is shown in
Fig. 2 in the fx; vg phase space, wherev denotes the electron
velocity. The plateau formed in the EDF at the phase
velocity v� ¼ !L=kL due to trapping is observed to grow

in extent and amplitude as a function of x up until the wave
frontmaximum [Fig. 2(a)]. Behind and up to thewave front,
the electrons have closed electron trajectories in phase
space [Figs. 2(b) and 2(c)]. Beyond the wave front, there
is a sharp transition to a mixed phase state [Fig. 2(d)],
signaling the sudden end of the AR region in space.

The principal features of the autoresonant LW in PIC
simulations may be reproduced using a simple 3-wave
model. The total transverse field potential Az may be
written as Az¼½A0ðx;tÞexpðic 0ÞþA1ðx;tÞexpðic 1Þ�=2þ
c:c:, where A0;1 are the slowly varying envelopes

describing the incident laser and backscattered waves.

Similarly, the longitudinal electric field Ex may be
written as Ex ¼ "Lðx; tÞ expðic LÞ=2þ c:c:, with
c 0;1;LðxÞ ¼

R
x
xr
dx0k0;1;Lðx0Þ �!0;1;Lt.

After substituting P ¼ �LA0A
�
1 into Eq. (1), the follow-

ing envelope equations for the EM waves make up the 3-
wave equations, relevant to the weakly kinetic regime:

L 0A0 ¼ ��0A1"L; L1A1 ¼ �1A0"
�
L; (2)

where �0;1 ¼ ekL=4me!0;1 and �L ¼ ðekL=4me!LÞ!2
pe,

me denoting the electron mass. The waves propagate
through the operators L0;1;L ¼ @t þ c0;1;L@x, where ci de-
notes the group velocity of wave i. The kinetic regime
considered here is consistent with the absence of Landau
damping to a good approximation.
We solved the 3-wave equations [Eqs. (1) and (2)] using

a finite difference method. For simplicity, all parameters
except �L ¼ �LðxÞ were calculated at xr and taken to be
constant, while the density profile, pump, and seed were
unchanged from those defined earlier. The value of �n,

occurring in the relation �!nl=!L ¼ ��nj�ne=n0j1=2,
was found in the PIC simulations to be given by �n �
0:25 and did not vary greatly with density in the relevant
region surrounding xr. Further details of the model used are
given in Ref. [8]. The envelope amplitude of the Langmuir
wave is plotted in Fig. 3(a), and the corresponding
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FIG. 3 (color online). As in Fig. 1, but taken from 3-wave
simulations. (a) Langmuir wave envelope amplitude.
(b) Envelope phase mismatch between the counterpropagating
EM waves and the LW.
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envelope phase difference � ¼ �0 ��1 ��L ¼
argðA0Þ � argðA1Þ � argð"LÞ is plotted in Fig. 3(b). The
key features of the PIC simulations are reproduced, with
the LW growing along a parabola in space, beginning at the
point of initial 3-wave resonance. The time scale over
which the autoresonant LW grows is accurately reproduced
in 3-wave simulations. Although smaller in size than in the
PIC simulation results, there is a similar offset between the
observed and predicted initial point of the fitted parabola.
In the 3-wave simulations, this is due to the cancellation
between shifts not being exact. A mathematical discussion
of the mechanism of phase locking is given in Refs. [1,8].

Repeating the simulation shown in Fig. 1 using a negative
density profile (L ¼ �100 �m) resulted in an initial small
growth of the LWat xr, followed quickly by a decay of the
LW. Analysis of the phase mismatch showed no extended
region of phase locking. The reflectivity of the plasma for
both positive and negative density profiles is shown in Fig. 4
(a). The reflectivity of the plasma is greater by an order of
magnitude when the gradient is such that AR may take
place. The raised reflectivity of the AR case is maintained
even after the autoresonant front ceases to be clearly dis-
cernible at around 1.5 ps, and the LWamplitude throughout
the plasma remains higher than the negative density profile
case until late times (3 ps and beyond). The initial seedwave
level Irhs and the reflectivity corresponding to Rosenbluth’s
prediction in the absence of any saturation mechanism,
Irhs expð2GRÞ, are also shown, GR denoting the
Rosenbluth gain factor defined in Ref. [13]. The AR case
exhibits a reflectivity above this level, while the case where
AR is not possible exhibits a reflectivity below it.

The spatial extent of AR (and thus the maximum LW
amplitude attained via AR) may be limited due to a number
of causes: (1) damping of the LW, (2) wave breaking,
(3) the vanishing of the value of kL as the LW propagates

to higher densities, or (4) a loss of phase locking due to the
growth of the LW, as described in Ref. [8]. In the autore-
sonant case (Fig. 1), increasing the intensity of the lhs (or
rhs) EM wave by a factor of 2 increased the amplitude at
which the autoresonant Langmuir wave saturated by a
factor of �1:2. If the AR was limited purely by cause (4),
this factor would be closer to �4 [8], while cause (3) may
also be ruled out. It is thus likely that the loss of autor-
esonance here is due to a combination of factors, such as
damping and the onset of wave breaking.
In the preceding case, AR of a single LW mode was

unambiguously observed by imposing a narrow band EM
seed at the rhs boundary. We now consider the plasma
reflectivity in the realistic case where the backscattered
wave amplitude is seeded, together with the LW, at all
points in the plasma with a broadband noise describing
the electron density fluctuations (i.e., Irhs ¼ 0). Even more
than in the previous narrow band case, the SRS reflectivity
is observed to be higher when the gradient is positive
compared to when it is negative (for the parameters used
in this Letter, this increase is a factor of 1� 104 at the first
saturation of the reflectivity, and tends towards a factor of
�15 [Fig. 4(b)]). We have clearly observed this effect for
values of L and kL�D in the ranges 1800< k0L < 9000
and 0:3< kL�D < 0:37 (evaluated at n0). Thus, AR desta-
bilizes the Rosenbluth solution [13], leading to a strong
enhancement of the SRS reflectivity. This enhancement
persists beyond the first saturation of the SRS reflectivity,
and is important beyond the regime usually deemed
‘‘weakly kinetic.’’
On the basis of the results obtained in Ref. [15], it may

be estimated that our 1D results correctly describe the
multidimensional physics for times shorter than �2:4 ps
for the plasma parameters considered in this Letter. More
generally, one may assume that the initial nonlinear evo-
lution of SRS is very well described by 1D modeling until
the LW transverse modulations become dominant. During
this initial phase, autoresonance could play a decisive role
in the LWevolution, and consequently on the long-term 2D
nonlinear SRS behavior. An amplifier scheme to transfer
beam energy via SRS in inhomogeneous plasmas has been
suggested in Ref. [17], for which, based on the results
presented here, AR in the kinetic regime may prove to be
a positive application.
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