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We report on the first realistic ab initio calculation of a hadronic weak decay, that of the amplitude A2

for a kaon to decay into two � mesons with isospin 2. We find ReA2 ¼ ð1:436� 0:063stat �
0:258systÞ10�8 GeV in good agreement with the experimental result and for the hitherto unknown

imaginary part we find ImA2 ¼ �ð6:83� 0:51stat � 1:30systÞ10�13 GeV. Moreover combining our result

for ImA2 with experimental values of ReA2, ReA0, and �0=�, we obtain the following value for the

unknown ratio ImA0=ReA0 within the standard model: ImA0=ReA0 ¼ �1:63ð19Þstatð20Þsyst � 10�4. One

consequence of these results is that the contribution from ImA2 to the direct CP violation parameter �0 (the
so-called Electroweak Penguin contribution) is Reð�0=�ÞEWP ¼ �ð6:52� 0:49stat � 1:24systÞ � 10�4. We

explain why this calculation of A2 represents a major milestone for lattice QCD and discuss the exciting

prospects for a full quantitative understanding of CP violation in kaon decays.
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Introduction.—CP violation is a necessary ingredient for
the generation of the matter-antimatter asymmetry in the
Universe and understanding its origin, both within and
beyond the standard model, is one of the primary goals
of particle physics research. It was first discovered in the
decays of kaons into two pions, and in this Letter we report
on a calculation of the amplitude A2 for K ! ð��ÞI¼2

decays from first principles. (Bose symmetry implies that
the two-pion eigenstates have isospin 0 or 2 and we denote
the corresponding complex amplitudes by A0 and A2.) A2 is
obtained by combining our lattice results for matrix ele-
ments of the four-quark operators in the effective
Hamiltonian [the matrix elements are given in Eqs. (7)–
(9)] with Wilson coefficients and Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements. For ReA2 we find
good agreement with the known experimental value [see
Eq. (10)] and, more importantly, we are also able to deter-
mine the previously unknown quantity ImA2 [Eq. (11)]. In
addition, within the standard model we can combine our
result for ImA2 with the experimental values of ReA0,
ReA2, and �

0=� to determine the remaining unknown quan-
tity ImA0, so that both the complex amplitudes A0 and A2

are now known.
This is the first quantitative determination of an ampli-

tude for a realistic hadronic weak decay and extends the

framework of lattice QCD into the important domain of
nonleptonic weak decays. It has taken several decades for a
realistic lattice QCD calculation of K ! ð��ÞI¼2 decay
amplitudes to become possible because very significant
theoretical developments and technical progress were re-
quired. These are briefly discussed below and explained in
more detail in [1], where a full description of our calcu-
lation can be found. Among the key issues is the fact that
performing the simulations in Euclidean space makes the
evaluation of �� rescattering effects nontrivial. The pres-
ence of two pions interacting strongly in a finite box leads
to finite-volume effects which must be controlled [2]. In
fact the effects of finite volume can be exploited to ensure
the equality of the energies of the initial kaon and final two-
pion states by the imposition of carefully devised boundary
conditions. Finally, it is only relatively recently, with the
improvement of algorithms and access to teraflops-scale
computing resources, that it has become possible to per-
form simulations at physical u and d-quark masses.
The calculation of A2 is also important in that it deter-

mines the Oð5%Þ contribution of direct CP violation to �
[3,4], a level of precision which has become relevant due to
the major recent improvements in the evaluation of the BK

parameter with an uncertainty of less than 3%, see e.g., [5]
(for a recent review see [6]). Of course, a complete
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understanding of CP violation in K ! �� decays, includ-
ing the evaluation of �0=� and an understanding of the
�I ¼ 1=2 rule, requires the ability to compute both A0

and A2 directly. The present calculation is an important
milestone on the road to achieving this. For A0 however,
the two pions have vacuum quantum numbers and the
correlation functions are dominated by the vacuum inter-
mediate state. We report on our exploratory work in devel-
oping techniques for the efficient subtraction of the
vacuum contributions in [7] and look forward to presenting
results of a realistic computation of A0 in the future.

Details of the simulation.—The simulations were per-
formed using domain wall fermions (DWFs) with a gauge
action which we call IDSDR. This is the Iwasaki action
modified by a weighting factor, called the dislocation
suppressing determinant ratio (DSDR) [8–10], which al-
lows us to suppress configurations with large numbers of
modes of the 5-dimensional DWF transfer matrix with near
unit eigenvalue while retaining adequate topological
change. This modification is necessary since we have a
relatively large lattice spacing a which increases the fre-
quency of dislocations which break the chiral symmetry.

We have generated two ensembles of 2þ 1 flavor DWFs
with the IDSDR gauge action at� ¼ 1:75 and a lattice size
of 323 � 64� 32, where the final number is the length of
the fifth dimension. We determine the residual mass to be
mres ¼ 0:00184ð1Þ [11]. (Masses written without units are
to be understood as being in lattice units.) The ensembles
are generated with a simulated strange-quark mass of
mh ¼ 0:045 and light-quark masses of ml ¼ 0:001 and
ml ¼ 0:0042, with corresponding unitary pion masses of
approximately 170 MeVand 250 MeV, respectively. Quark
propagators are generated for a range of valence masses.
The analysis presented in this Letter is performed using 63
configurations from the 0.001 ensemble, each separated by
8 molecular dynamics time units, and quark propagators
with mh ¼ 0:049 and ml ¼ 0:0001. The (partially
quenched) pion has a near-physical mass of approximately
140 MeV. A subsequent detailed analysis with greater
statistics and improved procedures has yielded a slightly
lower value for the bare physical strange-quark mass
[0.0464(7)] [11].

We obtain the lattice spacing and the two physical quark
masses mud and ms using a combined analysis of these
IDSDR ensembles and our � ¼ 2:25, 323 � 64� 16 and
� ¼ 2:13, 243 � 64� 16 domain wall fermion configura-
tions with the Iwasaki gauge action [12,13]. This involves a
combined fit of pion and kaon masses and decay constants
and the mass of the � baryon as functions of the quark
masses and lattice spacing. We extrapolate to the contin-
uum limit along a family of scaling trajectories defined by
constant values ofm�,mK, andm� [13]. In our fits we take
the lattice artifacts to be Oða2Þ as expected and note that
the coefficients of the a2 terms are not equal for the two
different lattice actions. From the combined chiral

and continuum fits we obtain for the IDSDR ensembles
a�1 ¼ 1:375ð9Þ GeV and physical quark masses of
~ml ¼ 0:001 74ð3Þ and ~ms ¼ 0:0483ð7Þ in lattice units,

which correspond to mMS
ud ð2 GeVÞ ¼ 3:43ð13Þ MeV and

mMS
s ð2 GeVÞ ¼ 95:1ð3:0Þ MeV. (Here ~m¼mþmres.) In

this single fit to all three ensembles, the lighter quark
masses in the IDSDR ensemble better determine the com-
mon ChPT parameters that are less well constrained by the
more massive Iwasaki ensembles. Similarly, the two lattice
spacings of the Iwasaki ensembles determine a continuum
limit which then yields the a2 correction terms present in
the IDSDR results.
In order to ensure that the energy of the two-pion final

state (in the rest frame of the kaon) is (almost) equal tomK,
we have carefully chosen both the volume of the lattice and
the boundary conditions on the quark fields. With periodic
boundary conditions, the two-pion ground state corre-
sponds to each pion being at rest (up to finite-volume
corrections) so for the physical decay we would need to
consider an excited state [2]. Instead we introduce anti-
periodic spatial boundary conditions for some components
of the d quark’s momentum, so that the corresponding
components of the momentum of a �þ meson are odd-
integer multiples of �=L (L ¼ 32 is the spatial extent of
the lattice). There is now no state with both pions at rest.
This is not sufficient however, since the physical decay
Kþ ! �þ�0 involves a �0 which, even with antiperiodic
boundary conditions on the d quark, has momentum com-
ponents which are integer multiples of 2�=L. It is therefore
not possible to construct the �þ�0 state at rest. These
problems are overcome by using isospin symmetry and
the Wigner-Eckart theorem to relate the matrix elements
for the decay Kþ ! �þ�0 to those for the unphysical
process Kþ ! �þ�þ:

h�þ�0jQ�I¼3=2
�Iz¼1=2jKþi ¼

ffiffiffi
3

p
2

h�þ�þjQ�I¼3=2
�Iz¼3=2jKþi; (1)

an approach proposed and first explored in [14,15]. The
superscripts and subscripts on the operators Q denote how
the total isospin I and the z component Iz change between
initial and final state. Neglecting violations of isospin
symmetry, (1) is exact and so we can use the two-�þ state
to calculate the physical �I ¼ 3=2 decay amplitudes. In
this way we are able to avoid the need to consider an
excited state and at the same time we reduce the required
size of the lattice.
The kaon and pion masses and the energy of the two-

pion state in the simulation, together with the correspond-
ing physical values are presented in Table I.

TABLE I. mKþ , m�þ , and E�� in the simulation and the
corresponding physical values. The results are given in MeV.

mKþ m�þ E�� mK � E��

Simulated 511.3(3.9) 142.9(1.1) 492.6(5.5) 18.7(4.8)

Physical 493.677(0.016) 139.570 18(0.000 35) mKþ 0
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Evaluation of A2.—The generic form of the effective
Hamiltonian for K ! �� decays is

Heff ¼ GFffiffiffi
2

p X

i

ðVCKMÞiCiQi; (2)

where GF is the Fermi constant, ðVCKMÞi are the appropri-
ate CKM matrix elements, (specifically we use Vus ¼
0:2253, Vud ¼ 0:97429 and � ¼ �V�

tsVtd=V
�
usVud ¼

0:001 460 6� 0:000 604 08i), Qi are four-quark operators,
and Ci are the Wilson coefficients. The calculation of A2

requires the evaluation of the matrix elements of three
operators, classified by their transformations under
SUð3ÞL � SUð3ÞR chiral symmetry:

Qð27;1Þ ¼ ð �sidiÞLð �ujdjÞL;
Qð8;8Þ ¼ ð �sidiÞLð �ujdjÞR;

Qð8;8Þmix ¼ ð �sidjÞLð �ujdiÞR;
(3)

where i, j are color labels which run from 1 to 3. (Qð8;8Þ and
Qð8;8Þmix are the electroweak penguin (EWP) operators

contributing mainly to ImA2.) The main achievement being
reported here is the successful determination of the matrix
elements I¼2h��jQijKi. This starts with the evaluation of
the correlation function

Ci
K��ðtK;tQ;t��Þ¼h0jJ��ðt��ÞQiðtQÞJyKðtKÞj0i

¼e�mKðtQ�tKÞe�E��ðt���tQÞh0jJ��ð0Þj��i
�h��jQið0ÞjKihKjJyKð0Þj0iþ��� (4)

where JyK and J�� are interpolating operators for the kaon
and two-pion states, which are summed over space and
hence have zero momentum. The energy of the two-pion

state, E��, is a little larger than 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ nð�=LÞ2p
because

of finite-volume effects (in the isospin 2 state the two-pion
potential is repulsive). Here n is the number of spatial
directions in which antiperiodic boundary conditions have
been imposed on the d quark. The ellipsis represents the

contributions of heavier states, which are suppressed if tQ �
tK and t�� � tQ are sufficiently large. The sources for the

kaon and two pions are placed at fixed times, tK and t�� (in
lattice units), and we vary the position of the operator tQ.
The required h��jQijKi matrix element is one of the

factors in Eq. (4) and we need to remove the remaining
factors. This is achieved by evaluating two-point correla-

tion functions CKðtÞ ¼ h0jJKðtÞJyKð0Þj0i and C��ðtÞ ¼
h0jJ��ðtÞJy��ð0Þj0i, and calculating the ratio

RðtQÞ �
CK��ðtK; tQ; t��Þ

CKðtQ � tKÞC��ðt�� � tQÞ (5)

’ h��jQijKi
h0jJ��ð0Þj��ihKjJyKð0Þj0i

; (6)

where the factors in the denominator of Eq. (6) are deter-
mined by fitting the correlation functions CK and C��.
RðtQÞ is independent of tQ if all the time intervals are

sufficiently large. For illustration of the plateaus we present
in Fig. 1 the tQ behavior for the 3 operators for t�� � tK ¼
24. (We also have results for t�� ¼ 20, 28 and 32.)
Having obtained the matrix elements of the bare lattice

operators h��jQLatt
i jKi, in order to obtain A2 we must

renormalize the operators and apply finite-volume correc-
tions. The latter are given by the Lellouch-Lüscher factor
in terms of the s-wave ��-phase shift [2] (the phase-shift
can be obtained from E�� [16]). In order to combine our
results with the Wilson coefficients calculated in the

MS-NDR scheme [17–19], we perform the renormaliza-
tion in 3 steps. We start by obtaining the renormalization
constants in four RI-SMOM schemes using the procedures
described in [5]. Because the lattice is coarse the
renormalization scale is chosen to be low, 1.145 GeV, to
avoid lattice artifacts. We determine the universal,
nonperturbative continuum step-scaling function required
to evolve the operators to 3 GeV using our Iwasaki lattices
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FIG. 1 (color online). RðtQÞ for the 3 operators which contribute to K ! ð��ÞI¼2 decay amplitudes: (a) ð�sdÞLð �udÞL, (b) ð�sdÞLð �udÞR,
and (c) ð�sidjÞLð �ujdiÞR, where ð�sdÞLð �udÞL;R ¼ ð�si��ð1� �5ÞdiÞð �uj��ð1� �5ÞdjÞ. i, j are color labels and tK and t�� are 0 and 24.
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[20,21]. Finally at 3 GeV we convert the results to the

MS-NDR scheme using one-loop perturbation theory.

Our final results for the matrix elements in theMS-NDR
scheme at a renormalization scale of 3 GeV are:

Mð27;1Þ ¼ ð3:20�0:13stat�0:58systÞ�10�2 GeV3; (7)

Mð8;8Þ ¼ ð5:85�0:89stat�1:11systÞ�10�1 GeV3; (8)

Mð8;8Þmix ¼ ð2:75� 0:12stat � 0:52systÞ GeV3; (9)

where for each operator Qi, Mi ¼ h�þ�þjQijKþi.
In terms of these matrix elements, A2e

i�2 ¼ffiffiffi
3

p
=2ðGF=

ffiffiffi
2

p ÞPiðVCKMÞiCiMi, where the Wilson coeffi-
cients correspond to operators for the physical Kþ !
�þ�0 decays with the normalization ð �sdÞL½ð �uuÞL�
ð �ddÞ�L þ ð �suÞLð �udÞL for the (27, 1) operator and similarly
for the EWP operators.

Combining the results in Eqs. (7)–(9) with the Wilson
coefficients, CKM matrix elements, and GF we find:

ReA2¼ð1:436�0:062stat�0:258systÞ�10�8 GeV (10)

ImA2¼�ð6:83�0:51stat�1:30systÞ�10�13 GeV: (11)

The result for ReA2 agrees well with the experimental
value of 1:479ð4Þ � 10�8 GeV obtained from Kþ decays
and 1:573ð57Þ � 10�8 GeV obtained from KS decays (the
small difference arises from the unequal u and d quark
masses and from electromagnetism, two small effects not
included in our calculation). ImA2 is unknown so that
the result in Eq. (11) provides its first direct determination.
For the phase of A2 we find ImA2=ReA2 ¼ �4:76ð37Þstat �
ð81Þsyst � 10�5.

The various sources of systematic error are analyzed in
detail in [1] and our conclusions are summarized in
Table II. The dominant source of uncertainty is due to
lattice artifacts, and since we have a relatively coarse
lattice and the matrix elements are proportional to a�3,
these errors are substantial. The estimate of 15% is ob-
tained in two ways. First, in order to determine A2 in
physical units we must divide by a3, a quantity which
varies by 12% when a is determined in physical units

from a lattice determination of m�, f�, fK, and r0.
Second, we use the global fit described earlier to deter-
mine the a2 correction in the similar matrix element
hK0jQ�S¼2

ð27;1Þ j �K0i. This correction is found to be 14%. The

finite-volume uncertainties are estimated from the differ-
ences of infinite- and finite-volume one-loop chiral pertur-
bation theory. The uncertainties in the Wilson coefficients
are conservatively taken as the difference between the
leading and next-to-leading order terms as defined in
[22]. We estimate the truncation errors in the perturbative

factors converting the operators to the MS-NDR scheme
from the variation of the results obtained using different
RI-SMOM intermediate schemes. We note also, that in
contrast to �I ¼ 1=2 decays, all the quarks participating
directly in�I ¼ 3=2 decays are valence quarks and in such
cases the effect of using partially quenched or partially
twisted boundary conditions is small [23]. For more details
and for a discussion of the remaining uncertainties, due to
the small difference from physical kinematics, and in the
evaluation of the Lellouch-Lüscher factor and the step-
scaling functions, we refer the reader to [1].
Using Eqs. (31), (32), and (40) of [24], our result

for ImA2 can be combined with the experimental results
for ReA2, ReA0 ¼ 3:3201ð18Þ � 10�7 GeV, and �0=� to
obtain the unknown ratio:

ImA0

ReA0

¼ �1:63ð19Þstatð20Þsyst � 10�4: (12)

This ratio allows us to determine in full QCD the effect of
directCP violation inKL ! �� on �, customarily denoted
by �� [3], ð��Þabs ¼ 0:923� 0:006, where the subscript
‘‘abs’’ denotes that at present only the absorptive long-
distance contribution (Im �12) is included [4]. (The error is
now dominated by the experimental uncertainty in �0=�.)
The analogous contribution from the dispersive part (Im
M12) [4] is yet to be determined in lattice QCD, but we
describe progress towards being able to do this in [25]. The
continuum result ð��Þabs ¼ 0:92ð2Þ in [3] was updated to
�� ¼ 0:94ð2Þ after the long-distance contributions to Im
M12 were included [4]. For a recent review of continuum
determinations of A0 and A2 see [26].
Using our value of ImA2 in Eq. (11) and taking the

experimental value given above for ReA2 from Kþ decays
we obtain the EWP contribution to �0=�, Reð�0=�ÞEWP ¼
�ð6:52� 0:49stat � 1:24systÞ � 10�4.

Conclusions and outlook.The ab initio calculation of the
complex K ! ð��ÞI¼2 decay amplitude A2 described
above builds upon substantial theoretical advances,
achieved over many years as outlined in the introduction.
It is encouraging that the value we find for ReA2 is in good
agreement with experiment and we are also able to deter-
mine ImA2 for the first time. It will be important to repeat
this calculation using a second lattice spacing so that a
continuum extrapolation can be performed thus eliminat-
ing the dominant contribution to the error, reducing the

TABLE II. Systematic error budget for ReA2 and ImA2.

ReA2 ImA2

Lattice artifacts 15% 15%

Finite-volume corrections 6.2% 6.8%

Partial quenching 3.5% 1.7%

Renormalization 1.7% 4.7%

Unphysical kinematics 3.0% 0.22%

Derivative of the phase-shift 0.32% 0.32%

Wilson coefficients 7.1% 8.1%

Total 18% 19%
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total uncertainty to about 5%. We expect that the dominant
remaining errors in A2 will then come from the omission of
electromagnetic and other isospin breaking mixing be-
tween the large amplitude A0 and A2.

Much more challenging but of even greater interest is
the application of these methods to the evaluation of A0

allowing for a calculation of �0=� and an understanding of
the�I ¼ 1=2 rule. Although the framework presented here
will also support the calculation of A0, serious obstacles
must be overcome. Much larger Monte Carlo samples will
be required to remove the large fluctuations remaining after
the contribution of the vacuum state has been removed.
The antiperiodic boundary conditions for the d-quark field
used in this Letter cannot be applied to the I ¼ 0 �� state.
Instead more sophisticated boundary conditions, mixing
quarks and antiquarks, and an isospin rotation, (G-parity
boundary conditions) [14], must be used for both the
valence and the sea quarks. Exploratory studies [7] suggest
that obtaining adequate statistics will be practical with the
next generation of machines which will become available
to our collaboration within the next few months.
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