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We present a nonperturbative quantization of general relativity coupled to dust and other matter fields.

The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism

symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with

the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and

puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical

reach.
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The problem of finding a quantum theory of gravity has
been a central one in theoretical physics for several deca-
des. There are two main approaches to the problem with
rather different starting points. The particle physics
approach is one in which Lorentz invariance and its asso-
ciated background structure is a central axiom, and remains
one in perturbative string theory. The nonperturbative
canonical approach originates in the view that general
relativity and related theories are geometric in nature and
should be treated without a breakup into a fixed back-
ground and a metric perturbation on it.

The nonperurbative approach began with the canonical
formulation of general relativity of Arnowitt, Deser, and
Misner (ADM) [1]. This was used by DeWitt [2] to for-
mulate quantization in the metric representation, and led to
the Wheeler-DeWitt equation becoming a central equation
of quantum gravity. Subsequent work on quantum geo-
metrodynamics in the 1970s by Misner [3], Kuchar [4],
and others, and in the early 1980s by Hawking and Hartle
[5] focused on finding the quantum theories of symmetry
reductions of general relativity.

Since the mid 1980s the nonperturbative approach has
evolved into the loop quantum gravity program, where the
ADM canonical variables are replaced by the triad and
connection introduced by Ashtekar [6]. This has since
developed into a mathematically well-defined formulation
in which the constraints of general relativity are realized as
operators on a kinematical Hilbert space [7]. With regard to
dynamics, there are several developments in minisuper-
space models that have given new results specifically with
applications to cosmology and singularity avoidance [8,9].
There has also been progress on midisuperspace models
and gravitational collapse using loop quantum gravity
(LQG) ideas [10–12]. However, a full theory of quantum
gravity without symmetry reductions remains elusive.

Among the obstacles in formulating a nonperturbative
theory of quantum gravity is the problem of time and its
associated conserved inner product. The problem arises
because of the time reparametrization invariance of the

theory. This invariance is manifested in the canonical
theory by a Hamiltonian constraint rather than a nonvan-
ishing physical Hamiltonian.
Although any theory can be made locally time gauge

invariant, such ‘‘parametrization’’ is an artificial construct
that gives a Hamiltonian constraint linear in one of the
canonical momenta. This linearity in turn provides a natu-
ral time gauge fixing which allows the recovery of the
original unparametrized theory. The problem is that gen-
eral relativity coupled to usual matter is not a parametrized
theory in this sense, since the Hamiltonian constraint is
quadratic in all momenta.
A ‘‘solution’’ to the problem of time could be to make a

suitable time gauge fixing in the classical theory and obtain
the corresponding true Hamiltonian. This leads to two
generic problems: (i) Different time gauges give different
Hamiltonians with no way known to connect them (unlike
in Minkowski spacetime and other background dependent
theories) where the Lorentz transformations are repre-
sented on the physical Hilbert space and connect different
frames, and (ii) physical Hamiltonians have a form that is a
square root. This is because the Hamiltonian constraint is
quadratic or possibly worse (depending on matter potential
energy terms) in all canonical variables, so that solving for
the Hamiltonian after gauge fixing is at best a quadratic
equation.
A solution to the problem of time is suggested in

work of Brown and Kuchar [13] who introduced a
pressureless dust coupled to general relativity. Their
action leads to a remarkable canonical theory in which
the Hamiltonian constraint is linear in the dust momen-
tum. This suggest a natural ‘‘theory provided’’ time
variable and reduced Hamiltonian. Furthermore, the
dust is such that it provides a time and space reference
system. However, if the dust frame is used to gauge fix
the classical theory, the reduced Hamiltonian is still a
square root. This approach is studied in the LQG con-
text in [14] where a fully reduced quantization is sug-
gested, but this obstacle remains unresolved beyond a
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formal level. (Other works with scalar field time have
the same problem [15,16].)

In this Letter, we provide a solution to both the problem
of time and that of the square root by introducing a modi-
fication of the Brown-Kuchar dust and combining it with
the kinematical results of LQG. The approach uses a
‘‘hybrid’’ quantization in the sense that only a time gauge
is fixed, but the spatial coordinate gauges are not; there-
fore, the spatial diffeomorphism constraint remains in the
theory. Combined with the kinematical results of LQG, this
approach leads to a complete and rigorous formulation of a
quantum gravity theory. The Hamiltonian of the theory is
what would be the Hamiltonian constraint without the dust,
and the kinematical Hilbert space of LQG becomes (up to
spatial diffeomorphisms) the physical Hilbert space. This
space carries a unitary representation of spatial diffeomor-
phisms [17], so the resulting picture is like that of the
Poincaré group carried on the Hilbert space of quantum
field theory.

The theory we consider is given by the action,

S ¼ 1

4G

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþ SSM

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Mðgab@aT@bT þ 1Þ; (1)

where SSM is the action for any standard model matter. In
addition to the metric gab and matter fields in SSM, this
action contains the dust field T, with M enforcing its
gradient to be timelike. The last term resembles the
Brown-Kuchar dust action [13], but is different in that
the dust is irrotational. (The action with one scalar was
also considered as a possible simplification in [13,18], but
its full possibilities at the quantum level were not ex-
plored.) It also resembles the so-called ether models
studied in [19], where the dust four velocity is not written
as the gradient of a scalar, and contains other dynamical
terms. With Ua ¼ @aT the dust stress-energy tensor is

Tab ¼ MUaUb þ ðM=2ÞgabðgcdUcUd þ 1Þ; (2)

this is the usual form of dust field with rest mass M.
Since the Hamiltonian theory of the gravity coupled to

matter is well known in both the ADM and Ashtekar-
Barbero variables, we only need to obtain the canonical
formulation of the dust. Substituting the ADM form of the
metric,

ds2¼�N2dt2þqabðNadtþdxaÞðNbdtþdxbÞ; (3)

in the dust Lagrangian gives

LD ¼ M
ffiffiffi
q

p
2N

½ð _T þ Na@aTÞ2 � N2ðqab@aT@bT þ 1Þ�: (4)

The dust momentum is

pT ¼ @LD

@ _T
¼ ffiffiffi

q
p M

N
ð _T þ Na@aTÞ; (5)

which gives the canonical action

SD ¼
Z

dtd3x½pT
_T � NH D � NaCD

a �; (6)

where

H D ¼ 1

2

�
p2
T

M
ffiffiffi
q

p þM
ffiffiffi
q

p
p2
T

ðp2
T þ qabCD

a C
D
b Þ
�
; (7a)

CD
a ¼ �pT@aT: (7b)

Now the equation of motion for M gives

M ¼ ½q��1=2p2
T½p2

T þ qabCD
a C

D
b ��1=2: (8)

Substituting this back into the dust canonical action yields

SD ¼
Z

d3xdt½pT
_T � N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ qabCD

a C
D
b

q
þ NaCD

a �: (9)

At this stage, it is evident from this action that the
dust contribution to the full Hamiltonian constraint is
the square root in the last equation, with the expected
addition to the spatial diffeomorphism constraint. The
difference from the main Brown-Kuchar result is that
CD
a has a simpler form, being composed of only one

scalar T and its conjugate momentum. This is crucial
for what follows.
Let us now impose the canonical time gauge fixing

condition T ¼ t. This is, of course, the obvious choice
for the parametrized particle and scalar field, and is also
natural here (this gauge is also discussed in [18]). This
condition is second class with the Hamiltonian constraint

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ qabCD

a C
D
b

q
þH G þH SM ¼ 0; (10)

where the last two terms are the standard gravitational and
matter contributions to this constraint. Substituting the
gauge condition into this constraint gives the physical
Hamiltonian density,

~H :¼ �pT ¼ H G þH SM; (11)

which is just the sum of the gravitational and nondust
matter energy densities. (We note that the same
Hamiltonian density may be obtained by using the strongly
commuting Brown-Kuchar Hamiltonian constraint [13],
with one scalar nonzero and the same gauge choice.)
The spatial diffeomorphism constraint takes the form

Ca � CG
a þ CSM

a ¼ 0 (12)

in this time gauge, since pT@aT ¼ pT@at ¼ 0. (CG
a and

CSM
a are the usual gravitational and matter parts of this

constraint.) Finally, we note that the physical Hamiltonian
is (spatial) diffeomorphism invariant: fCðNÞ;R d3x ~Hg ¼ 0,
where CðNÞ ¼ R

� d3xNaCa, and the diffeomorphism con-

straint algebra is, as expected, fCðNÞ; CðMÞg ¼ Cð½N;M�Þ.
The spacetime metric is obtained by requiring

that the condition T ¼ t is dynamically propagated:
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_T ¼ _t ¼ 1 ¼ fT;R� d3xðNH þ NaCaÞgjT¼t. This gives

lapse N ¼ 1 but leaves the shift Na unconstrained. The
gauge fixed Hamiltonian action in the ADM canonical
variables (qab, ~�

ab) is therefore,

SGF ¼
Z

d3xdtð ~�ab _qab � ~H � NaCaÞ; (13)

and time reparametrization is no longer a gauge symmetry.
The theory formally resembles a Yang-Mills gauge theory,
but with the Gauss law replaced by the spatial diffeomor-
phism constraint. Furthermore, the physical Hamiltonian
~H is not a square root, a fact that removes a fundamental
hurdle for quantization. The term H G in ~H (11) may be
written in either the ADM or in the triad-connection var-
iables. We will consider the latter where there exists a well
developed kinematical quantization [17] leading to the
space H diff of diffeomorphism-invariant states. With our
framework this carries over unaltered, but becomes the
physical quantization.

In the triad-connection variables, the canonical phase
variables are the pair (Ai

a, E
a
i ) where A

i
a ¼ �i

aðEÞ þ �Ki
a is

an su(2) connection and Eai is a vector density of weight
one. They satisfy the Poisson bracket

fAi
a; E

b
j g ¼ �i

j�
a
b�ðx; yÞ: (14)

The gravitational part of the Hamiltonian (11) is

H G ¼ �2

2
ffiffiffiffiffiffiffiffiffiffi
detE

p Ea
i E

b
j ð�ijkFk

ab þ 2ð1� �2ÞKi
½aK

j
b�Þ; (15)

with the variables subject to the Gauss and spatial diffeo-
morphism constraints:

Gi ¼ @aE
a
i þ �kijA

j
aEa

k; (16a)

CG
a ¼ Eb

i F
i
ab � Ai

aGi: (16b)

The phase space variables used for quantization are the
holonomy U�ðAÞ � P expðR� A

i
a�

idxaÞ and the flux Ki ¼R
S E

aid�a, where the loop � and surface S are embedded

in a spatial slice, and �i is a generator of the group. These
variables satisfy the Poisson bracket:

fU�;K
ig ¼

Z
�
ds

Z
S
d�a _�aðsÞ�3ð�ðsÞ; Sð�ÞÞ�iU�: (17)

This algebra is quantized on the Hilbert space H kin

spanned by the spin-networks states. The basis is labeled
by three sets of quantum numbers: a graph embedded in a
3-manifold, by an assignment of spin labels on its edges,
and by intertwiners on its vertices (which sew together the
spins entering a vertex) [20].

The main results of this kinematical quantization (also
known as polymer quantization) are (i) the representation
is unique [21] and background independent, (ii) the solu-
tions to the Gauss law (16a) form the subspace of H kin

spanned by the spin network with trivial intertwiners,

(iii) implementation of the quantum (spatial) diffeomor-
phism constraint is well understood [17], (iv) the geometric
area and volume operators are well defined on the resulting
space H diff and have discrete spectra, and finally, (v) the
Hamiltonian constraint can also be written as a well-
defined operator on H diff .
The problem not solved in LQG is the determination

of the physical Hilbert space and observables, a step
which can only be completed by solving the quantum
Hamiltonian constraint. It is this final problem that is
bypassed in our approach: A complete formulation of a
quantum theory of gravity results because (v) gives the

physical Hamiltonian Ĥ G of the present theory. This step
also resolves the square root obstacle in previous attempts
to construct a deparametrized quantum gravity, which
made the resulting formalism difficult to apply, even for
homogeneous models with arbitrary matter fields.
There are two approaches for formulating the physical

Hamiltonian Ĥ G. In its original form, it acts by adding
particular edges to the graph of a spin-network basis state.
In an alternative formulation, known as algebraic LQG

[22], Ĥ G leaves the graph unchanged, but modifies the
other quantum numbers. This makes it technically easier
for physical applications. It is this latter approach that we
apply in our formulation.
To define the action of the Hamiltonian, one first chooses

a fixed graph �. The choice includes (but is not restricted
to) the triangular or cubic lattice. The operator itself

has the form of the sum over the graph vertices ĤG ¼P
v2Vð�ÞĤ

G
v , where Ĥ

G
v is composed of (i) the volume

operator V̂ðvÞ, (ii) the combination ĥe½ĥ�1
e ; V̂� with holon-

omies ĥe along the adjacent edge, and (iii) the holonomies

ĥhðvÞ along the minimal closed loops in �. The operators
(i) and (ii) are diagonal and their properties are well under-

stood (see [23] for V̂), whereas (iii) changes the spin labels
on the edges composing the loop.
We note that because we have a physical Hamiltonian

which comes with a uniquely fixed lapse, there is no
anomaly in the quantum theory, unlike the formulation in
Ref. [22]. This is because now the commutator of the
Hamiltonian with itself vanishes identically.
The coupling of matter and its polymer quantization

are also well understood. The physical Hilbert space is
extended by adding matter quantum numbers on the
vertices and edges of graphs, depending on the type
of matter. The form and the action of the quantum
counterparts of the matter Hamiltonian (and matter
part of the diffeomorphism constraint) are also explic-
itly known [20].
The low energy consequences of the theory can be

probed by semiclassical states and observables. Here again
the needed elements are at our disposal: The kinematical
coherent states and diffeomorphism-invariant observables
are available [20,24], and immediately become physical in
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our approach. Thus, there is no need to utilize the partial
observable formalism [25].

The development presented here brings together three
aspects: (i) natural time gauge fixing, (ii) simplification of
the (physical) Hamiltonian by elimination of the square
root, and (iii) the diffeomorphism-invariant framework of
LQG. It is the unique combination of these elements which
allows a completion of the gravity quantization program.
Details of this approach are to appear in a forthcoming
paper [26].

This development has applications to a spectrum of
problems that require a quantum theory of gravity. We
discuss three possibilities: cosmology, gravitational col-
lapse and Hawking radiation, and quantum field theory in
curved spacetime. Details of the first have already ap-
peared [27], and the second is in preparation.

Cosmology.—The simplest application is to homogene-
ous and isotropic models. These have been much studied in
standard LQC, where a scalar field is used as a clock. This
has significant limitations because it cannot be extended
to an arbitrary scalar field potential or to other types of
matter. These issues are overcome in our approach, which,
in addition, provides significant technical simplicity for
both polymer and Schrödinger quantization.

For the isotropic flat model, described by the metric
ds2 ¼ �N2ðtÞdt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ, the Hilbert

space reduces to L2ð �R; d�BÞ, where �R is the Bohr com-
pactification of the real line. Its basis is provided by
eigenstates jvi where v / a3. The diffeomorphism con-
straint vanishes identically and the Hamiltonian becomes

Ĥ G¼�3�G

8�

ffiffiffiffiffiffi
jv̂j

p
ðN̂ �N̂ �1Þ2

ffiffiffiffiffiffi
jv̂j

p
þ 3	c

16�
�jvj; (18)

where N̂ jvi ¼ jvþ 1i and � � 1:35‘3Pl, 	c � 0:82	Pl

are constants. This Hamiltonian is essentially self-adjoint
and its spectrum can be found analytically. Explicit unitary
evolution provides a controllable way of studying the
dynamics in all epochs; in particular, the big bang singu-
larity is replaced by a bounce. The analysis is readily
extended for coupling to a scalar field or other matter,
since polymer realizations of the matter Hamiltonians are
available. Details of these results appear in [27].

For inhomogeneous cosmology, both for metric fluctua-
tions about Friedmann-Robertson-Walker or nonperturba-
tive models such as Gowdy or cylindrical waves, our
approach benefits from the existence of a (manageable)
physical Hamiltonian and a simple and anomaly-free alge-
bra of constraints. For cosmology, the gauge invariant
linear perturbation theory [28] is directly applicable and
technically manageable; it has the potential to provide an
observational signature.

For nonperturbative models, the approach again pro-
vides a convenient starting point for the implementation
of midisuperspace or hybrid quantization schemes [8,10].
It has the potential to address directly the existing difficul-

ties of these treatments, such as the problem of renormaliz-
ability in the inhomogeneous degrees of freedom.
Gravitational collapse and Hawking radiation.—The

classical problem is well understood in spherical symmetry
with a minimally coupled scalar field [29], where critical
behavior at the onset of black hole formation and a finely
tuned violation of the cosmic censorship conjecture are
observed. This model is much richer than Callan-Giddings-
Horowitz-Strominger, which has only pure inflow and a
black hole always forms, so there is no critical behavior.
The quantization of the model is important to study for at
least three reasons: (i) the expectation of singularity avoid-
ance in quantum gravity must modify the cosmic censor-
ship conjecture violating critical solution, (ii) the presence
of both inflow and outflow can qualitatively affect
Hawking radiation, and (iii) a unitary quantum theory
would immediately solve the information loss problem.
Our approach provides two concrete models, one with

dust only, and the other with dust and a scalar field. Both
are midisuperspace models that can be investigated in
either Ashtekar-Barbero or ADM variables using polymer
quantization. The spatial metric is parametrized as ds2 ¼
�2ðr; tÞdr2 þ Rðr; tÞ2d�2, and there is a radial diffeomor-
phism constraint and a physical Hamiltonian. The first
model has one local degree of freedom and the second
has two. At the quantum level the models are technically
straightforward to write down, unlike the unmanageable
nonlocal Hamiltonian without dust that was first discussed
by Unruh [30].
The quantum theory of the dustþ scalar field in spheri-

cal symmetry is currently under study by the authors.
There is already a strong indication that a self-adjoint
physical Hamiltonian is available, a feature intimately
linked with resolving the information loss paradox.
Quantum field theory on curved spacetime.—Another

expectation of a quantum theory of gravity is that it pro-
vides a low energy ‘‘emergent’’ quantum field theory on a
curved background. In our framework, this is accom-
plished by first choosing a dynamical semiclassical state
of geometry jc ð~gÞiG peaked on a classical trajectory ~g that
provides the desired background. (As we have noted, such
states are available since we have solved the problem of
time, and the Hilbert space is the physical one.) The state is
then used to obtain an effective background dependent
Hamiltonian:

Ĥ eff ¼ Ghc ð~gÞjĤ Gjc ð~gÞiGÎ þ Ĥ mð~gÞ: (19)

This Hamiltonian acts only on the matter Hilbert space, so
this procedure yields a quantum field theory on curved
spacetime. Thus, a given semiclassical state for the gravity
sector provides an unambiguous matter vacuum obtained
by finding the ground state of this effective Hamiltonian.
In contrast, the standard semiclassical approximation,

Gab ¼ 8�hTabi, requires first selecting a matter state (in
Fock quantization) in which the stress-energy tensor
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expectation value is computed, and then solving this
equation for the metric. This is the arena for the usual
Hawking radiation calculation.

In summary, we have presented a complete and compu-
tationally accessible theory of quantum gravity, and out-
lined a wide range of applications, from cosmological
models to gravitational collapse.
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