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We explore the mechanism responsible for the ergodicity breaking in systems with long-range forces. In

thermodynamic limit such systems do not evolve to the Boltzmann-Gibbs equilibrium, but become

trapped in an out-of-equilibrium quasi-stationary-state. Nevertheless, we show that if the initial distribu-

tion satisfies a specific constraint—a generalized virial condition—the quasistationary state is very close

to ergodic and can be described by Lynden-Bell statistics. On the other hand, if the generalized virial

condition is violated, parametric resonances are excited, leading to chaos and ergodicity breaking.
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Statistical mechanics of systems in which particles in-
teract through long-ranged potentials is fundamentally
different from the statistical mechanics of systems with
short-range forces [1]. In the latter case, starting from an
arbitrary initial condition (microcanonical ensemble) sys-
tems evolve to a thermodynamic equilibrium in which
particle distribution functions are given by the usual
Boltzmann-Gibbs statistical mechanics [2]. The state of
thermodynamic equilibrium does not depend on the spe-
cifics of the initial distribution, but only on the global
conserved quantities such as energy, momentum, angular
momentum, etc. The situation is very different for systems
in which particles interact through long-range potentials,
such as gravity or unscreened Coulomb interactions [3–6].
In this case, it has been observed in numerous simulations
that these systems do not relax to thermodynamic equilib-
rium, but become trapped in a quasistationary state (qSS),
the lifetime of which diverges with the number of particles
[4,6–8]. The distribution functions in this quasistationary
state do not obey the Boltzmann-Gibbs statistical mechan-
ics—and, in particular, particle velocities do not follow the
Maxwell-Boltzmann distribution, but depend explicitly on
the initial condition. It has been an outstanding challenge
of statistical mechanics to quantitatively predict the final
stationary state reached by systems with unscreened
long-range forces, without having to explicitly solve the
N-body dynamics or the collisionless Boltzmann (Vlasov)
equation.

Some 40 years ago Lynden-Bell (LB) proposed a gen-
eralization of the Boltzmann-Gibbs statistical mechanics to
treat systems with long-range interactions [9]. Lynden-
Bell’s construction was based on the Boltzmann counting,
but instead of using particles, LB worked directly with the
levels of the distribution function. The motivation for this
approach was the observation that dynamical evolution of
the distribution function for systems with long-range inter-
actions is governed by the Vlasov equation [10]. This
equation has an infinite number of conserved quantities,
Casimirs—any local functional of the distribution function
is a Casimir invariant of the Vlasov dynamics. In particular

if the initial distribution function is discretized into levels,
the volume of each level must be preserved by the Vlasov
flow. For an initially one-level distribution function,
Vlasov dynamics requires that the phase-space density
does not exceed that of the initial distribution—one-
particle distribution function over the reduced phase space
(�-space) evolves as an incompressible fluid. Using this
constraint in a combination with the Boltzmann counting,
LB was able to derive a coarse-grained entropy, the maxi-
mum of which he argued should correspond to the most-
probable distribution—the one that should describe the
equilibrium state. Numerous simulations, however, showed
that, in general, Lynden-Bell statistics was not able to
account for the particle distribution in self-gravitating
systems, and the theory has been abandoned in the astro-
physical context. Recently, however, Lynden-Bell’s work
has been rediscovered by the statistical mechanics com-
munity, which showed that for some systems, specifically
the widely studied Hamiltonian mean-field model (HMF),
Lynden-Bell’s approach could make reasonable predic-
tions about the structure of the phase diagram [11]. The
fundamental question that needs to be addressed is: Under
what conditions can Lynden-Bell statistics be used to
accurately describe systems with long-range interactions?
This will be the topic of the present Letter.
To be specific, we will study the HMF model [1], which

has become a test bench for theories of systems with long-
range forces. However, our results and methods are com-
pletely general and can be applied to other systems, such as
self-gravitating clusters or confined non-neutral plasmas.
The HMF model consists of N particles restricted to move
on a circle of radius one. The dynamics is governed by the
Hamiltonian

H ¼ XN
i¼1

p2
i

2
þ 1

2N

XN
i;j¼1

½1� cosð�i � �jÞ�; (1)

where the angle �i is the position of ith particle and pi is its
conjugate momentum [11–13]. The macroscopic behavior
of the system is characterized by the magnetization vector
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M ¼ ðMx;MyÞ, where Mx � hcos�i, My � hsin�i, and

h� � �i stands for the average over all particles. The
Hamilton equations of motion for each particle reduce to

€� i ¼ �MxðtÞ sin�iðtÞ þMyðtÞ cos�iðtÞ: (2)

Since the Hamiltonian does not have explicit time depen-
dence, the average energy per particle,

u ¼ H

N
¼ hp2i

2
þ 1�MðtÞ2

2
; (3)

is conserved.
The failure of LB theory in the astrophysical context was

attributed to incomplete relaxation, lack of good mixing, or
broken ergodicity [14]. The mechanisms behind this failure
have not been elucidated. On the other hand, it has been
recently observed that if the initial distribution is virial-
ized—satisfies the virial condition—LB’s approach was
able to quite accurately predict the stationary state of
gravitational and Coulomb systems [3–6]. Unfortunately,
the virial theorem can be derived only for potentials which
are homogeneous functions. This is not the case for the
HMFmodel. Nevertheless, the fact that LB theory seems to
apply under some conditions makes one wonder if such
conditions can be found for arbitrary long-range potentials,
which are not in general homogeneous functions.

To answer the questions posed above, we note that if the
initial distribution is virialized, macroscopic oscillations of
observables should be diminished. On the other hand, if the
system is far from virial, the mean-field potential that each
particle feels will undergo strong oscillations. It is then
possible for some particles to enter in resonance with the
oscillations of the mean-field, gaining large amounts of
energy. The parametric resonances will result in the occu-
pation of regions of the phase space which are highly
improbable, from the point of view of Boltzmann-Gibbs
or LB statistics [15]. Furthermore, resonant particles will
take away energy from collective oscillations producing a
form of nonlinear Landau damping [16]. After some time,
macroscopic oscillations will die out and each particle will
feel only the static mean-field potential. From that point
on, particle dynamics will become completely regular,
with no energy exchange possible between the different
particles. The particles which have gained a lot of energy
from the parametric resonances will be trapped forever in
the highly improbable regions of the phase space, unable to
thermalize with the rest of the system.

To see how the theoretical picture advocated above can
be applied to the HMF, we first derive a generalized virial
condition for this model. For simplicity we will consider
initial distributions of the ‘‘water-bag’’ form in (�, p).
Without loss of generality, we choose a frame of reference
where h�i ¼ 0 and hpi ¼ 0. The one-particle initial distri-
bution function then reads

f0ð�; pÞ ¼ 1

4�0p0

�ð�0 � j�jÞ�ðp0 � jpjÞ; (4)

where � is the Heaviside step function, and j�0j and jp0j
are the maximum values of angle and momentum, respec-
tively. Note that from symmetry, MyðtÞ ¼ 0 at all times.

When the dynamics starts, the mean-squared particle
position will evolve with time. We define the envelope

of the particle distribution as �eðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3h�2ip

, so that
�eð0Þ ¼ �0. We next differentiate �eðtÞ twice with respect
to time to obtain the envelope equation of motion,

€�e ¼ 3hp2i
�e

þ 3h� €�i
�e

� 9h�pi2
�3e

: (5)

Using the conservation of energy, hp2i ¼ 2uþM2
xðtÞ � 1.

To calculate, h� €�i, we use the equation of motion for �.
Supposing that the distribution of angles remains close to
uniform on the interval [� �e, �e], we obtain

h� €�i ¼ �MxðtÞ
2�e

Z �eðtÞ

��eðtÞ
� sin�d�

¼ MxðtÞ cos�eðtÞ �M2
xðtÞ; (6)

where the magnetization MxðtÞ is

MxðtÞ ¼ 1

2�e

Z �eðtÞ

��eðtÞ
d� cos� ¼ sin�eðtÞ

�eðtÞ : (7)

Neglecting the correlations between positions and veloc-
ities, h�pi ¼ 0, we finally obtain a dynamical equation for
the envelope

€�e ¼ 3

�eðtÞ ð2uþMxðtÞ cos�eðtÞ � 1Þ; (8)

where u ¼ p2
0=6þ ð1�M2

0Þ=2 andM0 ¼ sinð�0Þ=�0. The
generalized virial condition is defined by the stationary
envelope, €�e ¼ 0, which means that along the curve

ð2u� 1Þ�0 þ sin�0 cos�0 ¼ 0 (9)

magnetization remains approximately invariant. In Fig. 1
we plot Eq. (9) in the M0-u plane and compare it with the
full molecular dynamics simulation of the HMF model. As
can be seen, agreement between the theory and simulation
is excellent.
Along the generalized virial condition curve, Eq. (9), the

magnetization—and, therefore, the mean-field potential
acting on each particle of the HMF model—has only
microscopic oscillations and the parametric resonances
are suppressed. Under these conditions, we expect that
LB theory will be valid. The coarse-grained entropy within
the LB approach is given by

sðfÞ ¼ �
Z

dpd�

�
f

�0

ln
f

�0

þ
�
1� f

�0

�
ln

�
1� f

�0

��
;

(10)

where �0 ¼ 1=4�0p0 [17]. Maximizing this entropy under
the constraints of energy and particle conservation, we
obtain the equilibrium distribution function

fðp; �Þ ¼ �0

e�½ðp2=2Þ�Mx cos���� þ 1
: (11)

PRL 108, 140601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 APRIL 2012

140601-2



The Lagrange multipliers � and � are determined by
particle and energy conservation,

Z
dpd�fðp; �Þ ¼ 1; (12)

Z
dpd�fðp; �Þ

�
p2

2
þ 1

2
ð1�Mx cos�Þ

�
¼ u; (13)

respectively, and the magnetization by the self-consistency
requirement, Z

dpd� cos�fðp; �Þ ¼ Mx: (14)

Solving these equations numerically along the curve
Eq. (9), we see that there is an excellent agreement between
LB theory and the simulations, Fig. 2. If the macroscopic
oscillations are suppressed and the parametric resonances
are not excited, the system is able to relax to a quasiergodic
equilibrium permitted by the Vlasov dynamics.

To make clear the role of parametric resonances in
ergodicity breaking, in Fig. 3(a) we plot the Poincaré
section of a set of noninteracting test particles, which at
t ¼ 0 are distributed in accordance with Eq. (4). The
motion of each particle is governed by Eq. (2) with Mx

determined by Eqs. (7) and (8). The position and momen-
tum of each particle are plotted when magnetization is
at its minimum. We see that if the energy and the initial
magnetization lie on the generalized virial curve—point
(B) of Fig. 1—particle trajectories are completely regular.
However, when initial conditions do not coincide with the
generalized virial curve—point (T) of Fig. 1—parametric
resonances appear and dynamics becomes chaotic.
Particles enter in resonance with the oscillations of the
mean-field potential, gaining sufficient energy to move
into statistically improbable regions of the phase space.
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FIG. 2. The angle and velocity distribution functions corre-
sponding to the initial conditions described by points (A), (B)
and (C) of Fig. 1, respectively. Symbols are the results of
molecular dynamics simulations and solid curves are the pre-
dictions of LB theory. The simulated distribution functions for
the point (B), lying on the generalized virial curve, are in
excellent agreement with the predictions of the LB theory
[panels (c) and (d)], demonstrating that the dynamics along the
generalized virial curve is quasiergodic. On the other hand, the
distribution functions for points (A) and (C) deviate significantly
from the predictions of LB theory — showing that away from the
generalized virial curve, ergodicity is broken [panels (a),(b) and
(e),(f)].
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FIG. 1 (color online). Phase diagram of the HMF model ob-
tained using the molecular dynamics simulations. Solid curve is
the line of first order phase transitions separating paramagnetic
and ferromagnetic phases. This line extends up toM0 ¼ 0:6, after
which point the order of the phase transition, shaded region (green
line), becomes unclear, with strong dependence on the initial
conditions and various reentrant transitions occurring in this
region. Dashed curve is the generalized virial condition,
Eq. (9). Along this curve oscillations of the envelope are sup-
pressed. Diamonds are the results of simulation. Starting with the
initial energy and magnetization along the virial curve, diamonds
show the final magnetization to which the system relaxes. For
points along this curve, the final magnetization is almost identical
to the initial one. Note that the generalized virial curve terminates
at M0 ¼ 0:34 slightly below the phase transition line. This small
difference, however, is sufficient to invalidate the Lynden-Bell
theory, which for M0 ¼ 0:4 predicts a second order phase tran-
sition, while the simulations show that the phase transition is of
first order [18]. Points (A), (B), and (C) correspond to the initial
conditions for the distribution functions shown in Fig. 2. The
Poincaré sections of the test particle dynamics for the initial
conditions described by the points (B) and (T) are shown in
Fig. 3. Finally, we note that since the stationary distribution
must satisfy the virial condition and the energy is conserved,
Eq. (9) allows us to predict the magnetization to which the system
will evolve for initial conditions lying inside the ferromagnetic
region, see the arrows for points (A) and (C).
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The Poincaré section of test particle dynamics is remark-
ably similar to the final stationary distribution obtained
using the complete N-body molecular dynamics simula-
tion of the HMF, Fig. 3. Equation (8) can also be used to
calculate the period of the first oscillation of MðtÞ. For
example, for point (T) of the phase diagram Fig. 1, we find
the period to be T ¼ 5:0, while the full molecular dynam-
ics simulations gives T ¼ 5:4. For point (C) we find
T ¼ 3:85, while the simulations give T ¼ 3:82.

In conclusion, we have studied the mechanism respon-
sible for the ergodicity breaking in systems with long-
range interactions. Ergodicity breaking and the parametric
resonances are intimately connected. If the macroscopic
oscillations—and the resulting resonances—are sup-
pressed, the system is able to relax to a quasiergodic sta-
tionary state. However, when the parametric resonances
are excited, some particles are ejected to statistically im-
probable regions of the phase space, at the same time as the
oscillations are damped out. The process of continuous
particle ejection, and the resulting decrease of macroscopic
oscillations of the envelope, leads to the formation of a

static mean-field potential and to asymptotically integrable
dynamics. Once the integrability of the equations of motion
is achieved, the ergodicity becomes irreversibly broken.
Unlike for particles with short-range interaction potentials,
ergodicity is the exception rather than the rule for systems
with long-range forces—it can only be observed if the
initial distribution function satisfies the generalized virial
condition derived in this Letter. Finally we note, that since
the stationary distribution must satisfy the virial condition
and the energy must be conserved, Eq. (9) allows us to
predict the magnetization to which the system will evolve
for initial conditions lying inside the ferromagnetic region.
For example, point (A) of Fig. 1 which has initial magne-
tization and energy M0 ¼ 0:74 and u ¼ 0:55, will evolve
to a final stationary state with M ¼ 0:56; while the point
(C) with M0 ¼ 0:74 and u ¼ 0:25, will evolve to a final
stationary state with M ¼ 0:86, which are precisely the
values obtained using the molecular dynamics simulations.
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FIG. 3. Poincaré sections of test particles and snapshots of the
phase space obtained using molecular dynamics simulation once
the system has relaxed to qSS. Panels (a) and (b) correspond to
the initial condition lying on the generalized virial curve, point
(B) of Fig. 1. In this case the test particle dynamics is completely
regular, and the stationary particle distributions are well de-
scribed by LB theory. Panels (c) and (d) correspond to the initial
conditions slightly off the virial curve, point (T) of Fig. 1. Even
though we have moved only a little from the virial curve, we see
the appearance of resonant islands and the dynamics of some of
the test particles becoming chaotic. Such resonances drive some
particles of the HMF to statistically improbable—from the point
of view of the Boltzmann-Gibbs and LB statistical mechanics—
regions of the phase space. Once the envelope oscillations are
damped out, particle dynamics becomes completely integrable,
and there is no mechanism for the resonant particles to equili-
brate with the rest of the distribution. Thus, away from the
generalized virial curve, ergodicity becomes broken.
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