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Recent work has precisely characterized the achievable trade-offs between three key information

processing tasks—classical communication (generation or consumption), quantum communication (gen-

eration or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits,

and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to

well-known protocols for quantum channels. A trade-off coding technique can attain any point in the

region and can outperform time sharing between the best-known protocols for accomplishing each

information processing task by itself. Previously, the benefits of trade-off coding that had been found

were too small to be of practical value (viz., for the dephasing and the universal cloning machine

channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high

for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise

channels, and amplifiers. We show that significant performance gains from trade-off coding also apply

when trading photon-number resources between transmitting public and private classical information

simultaneously over secret-key-assisted bosonic channels.

DOI: 10.1103/PhysRevLett.108.140501 PACS numbers: 03.67.Hk, 03.67.Pp, 04.62.+v

Shannon’s classical information theory found the ca-
pacity of a classical channel, which quantifies the channel’s
ability to transmit information [1]. The capacity serves as a
benchmark against which communication engineers can
test the performance of any practical scheme. Despite the
success of Shannon’s theory, it fails to identify the true
capacity for physical channels such as free-space or
fiber-optic links because the quantum physical properties
of the optical-frequency electromagnetic waves—the car-
riers of information—must be accounted for within a full
quantum framework in order to assess the ultimate limits
on reliable communication [2]. A major revision of
Shannon’s information theory, dubbed quantum Shannon
theory, has emerged in recent years in an attempt to deter-
mine the ultimate physical limits on communications [3].
This theory has provided a successful quantum theory of
information in many special cases [4–8], but recent devel-
opments have indicated that there is much more to under-
stand regarding the nature of information transmission over
quantum channels [9,10].

Quantum channels support a richer variety of informa-
tion processing tasks than do classical channels. A sender
can transmit classical information, such as ‘‘on’’ or ‘‘off’’
[11–13], or she can transmit quantum information, such as
the quantum state of a photon [14–16]. Additionally, if the
sender and receiver have prior shared entanglement, this
resource can boost the rate of information transmission
[17], generalizing the superdense coding effect [18]. The
sender might also want to transmit classical and quantum
information simultaneously to the receiver [6], or even
limit the amount of entanglement consumed in the
entanglement-assisted transmission of classical and/or

quantum information [19]. The sender and receiver could
further specify whether they would like the classical infor-
mation to be public or private [20].
In a ‘‘trade-off’’ communication problem, such as that

of simultaneous classical-quantum communication, a
naive strategy of time sharing would have the sender and
receiver use a classical communication protocol for some
fraction of the time (say, the best Holevo-Schumacher-
Westmoreland (HSW) classical code and a joint-detection
receiver on long code word blocks [11–13]), while operat-
ing with a quantum communication protocol for the other
fraction of the time (say, the best Lloyd-Shor-Devetak
(LSD) quantum code and a joint-detection receiver on
quantum code words [14–16]). Trade-off coding is a
more complex strategy, in which—simply stated—the
sender encodes classical information into the many differ-
ent ways of permuting quantum codes. Its performance can
beat that of time sharing for certain channels such as
dephasing and universal cloning machine channels, for
which it is even provably optimal [6,21–23]. The original
[3,6,19] and subsequent developments [22,24] on trade-off
coding have greatly enhanced our understanding of com-
munication over quantum channels. However, the pay-off
of trade-off coding for the channels studied previously was
too small to be worthwhile in a practical setting, given the
increased encoding and decoding complexity over time
sharing.
In this Letter, we show that trade-off coding yields

remarkable gains over time sharing for the single-mode
lossy bosonic channel, which can model free-space optical
communication. These single-mode results are sufficient to
construct trade-off capacity results for any physical optical
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communication channel that modulates multiple degrees of
freedom of the photon, such as spatial and polarization
modes of light. Our results also apply more generally to
thermal-noise and amplifying bosonic channels, which can
model systems as diverse as superconducting transmission
lines in the microwave range [25] or hybrid quantum
memories that store both classical and quantum informa-
tion in the collective degrees of freedom of atomic ensem-
bles [26]. We determine an achievable rate region for the
lossy bosonic channel using a transmitter that modulates
the two-mode squeezed vacuum—an entangled light state
that can be generated using parametric down-conversion—
and prove that this rate region is optimal, assuming that a
long-standing minimum-output entropy conjecture is true
[27–30]. Even if the conjecture is not true, our achievable
trade-off region beats time sharing between the best-known
quantum communication protocols by huge margins. The
same holds for the thermal and amplifying channels.

Trading quantum and classical resources.—Our first
result concerns the transmission of classical and quantum
information over a single-mode lossy bosonic channel of
input-output power transmissivity � 2 ð0; 1�, with a con-
straint on the mean photon number NS per mode at the
transmitter. Recall that this channel has the following

input-output Heisenberg-picture specification: b̂ ¼ ffiffiffiffi
�

p
â

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ê, where â, b̂, and ê are the respective bosonic

annihilation operators representing the sender’s input
mode, the receiver’s output mode, and an environmental
input in the vacuum state. Transmission over this channel
can also be used to generate shared entanglement between
the sender and the receiver, or this resource might assist
transmission if they share it beforehand. We let C be the
rate of classical communication, Q be the rate of quantum
communication, and E be the rate of entanglement genera-
tion (or consumption). If the rate of a resource is positive,
then the interpretation is that the protocol generates that
resource. Otherwise, the protocol consumes that resource.

Hsieh and Wilde described a general-purpose protocol
for entanglement-assisted communication of classical and
quantum information over many independent uses of any
noisy quantum channel [24] and subsequently found the
full ðC;Q;EÞ triple trade-off region [21,31]. The Hsieh-
Wilde protocol is constructed from a particular ensemble
fpXðxÞ; �xg and the channel N . Let j�xi denote a purifi-
cation of �x, let � � P

xpXðxÞ�x be the average density
operator of the ensemble, let N c be the channel comple-
mentary to N [32], and let Hð�Þ � �Trð�log2�Þ be the
von Neumann entropy. Then, the Hsieh-Wilde protocol
generates H½N ð�Þ� �P

xpXðxÞHð�xÞ bits per channel
use and

P
xpXðxÞfHð�xÞ þH½N ð�xÞ� �H½N cð�xÞ�g=2

qubits per channel use by consuming
P

xpXðxÞfHð�xÞ þ
H½N cð�xÞ� �H½N ð�xÞ�g=2 ebits per channel use [24].
This protocol is a trade-off coding protocol, in the sense
that encoded classical and quantum data can be fed into
the same channel input, rather than into separate channel

inputs, as is the case in a time sharing protocol that
allocates a portion of the channel uses solely for classical
data transmission and the other portion solely for quantum
data transmission. Figure 1 depicts an example operation
of this protocol in the case where there is no entanglement
assistance. Combining the Hsieh-Wilde protocol with tele-
portation, superdense coding, and entanglement distribu-
tion (while keeping track of net rates) gives the following
achievable rate region [21]:

Cþ 2Q � H½Nð�Þ� þX
x

pðxÞfHð�xÞ �H½N cð�xÞ�g;

Qþ E � X
x

pðxÞfH½Nð�xÞ� �H½N cð�xÞ�g;

CþQþ E � H½N ð�Þ� �X
x

pðxÞH½N cð�xÞ�: (1)

Hsieh and Wilde also proved a multiletter converse, so that
the above region’s regularization is optimal [21,31].
For the lossy bosonic channel, the Hsieh-Wilde protocol

and rate region translate to the following. The protocol is
constructed from an ensemble of Gaussian-distributed
phase-space displacements of two-mode squeezed vacuum

FIG. 1 (color online). A sketch of the trade-off coding protocol
for communication of classical and quantum information with-
out any entanglement assistance (this case is the Devetak-Shor
protocol [6]). The sender begins by encoding qubits j’1i, j’2i,
and j’3i into different quantum error-correcting codes, each
constructed from a particular state j�xi and the channel N .
To encode classical information, the sender permutes the quan-
tum systems emerging from the outputs of the encoders accord-
ing to some classical messagem. The sender then transmits these
systems through many independent uses of the noisy channel
N . The receiver obtains the outputs of channels and performs an
HSW measurement to determine the classical message m. If the
success probability of the measurement is asymptotically close
to 1, then it causes an asymptotically negligible disturbance to
the state on which it acts. The receiver then knows the permu-
tation, unpermutes the quantum systems, and exploits the
decoders of the quantum error-correcting codes to decode the
qubits j’1i, j’2i, and j’3i. The Wilde-Hsieh protocol [31]
extends this idea by permuting entanglement-assisted quantum
codes in a similar way.
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(TMSV) states: fp ��NS
ð�Þ; DA0 ð�Þjc TMSViAA0 g, where A0 is

a system sent into the channel input and A is a system that
purifies A0. [In the above, the distribution p ��NS

ð�Þ replaces
pXðxÞ, and the state DA0 ð�Þjc TMSViAA0

replaces j�xi.]
The distribution p ��NS

ð�Þ � 1
� ��NS

expf�j�j2= ��NSg is an

isotropic Gaussian distribution with variance ��NS, where
�� � 1� � and � 2 ½0; 1� is a photon-number-sharing

parameter. The state jc TMSViAA0
is a two-mode squeezed

vacuum [33,34]:

jc TMSViAA0 � X1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�NS�n=½�NS þ 1�nþ1

q
jn; niAA0

: (2)

Evaluating the entropies in (1) for this ensemble and the
lossy bosonic channel gives the following achievable rate
region:

Cþ 2Q � gð�NSÞ þ gð�NSÞ � g½ð1� �Þ�NS�;
Qþ E � gð��NSÞ � g½ð1� �Þ�NS�;

CþQþ E � gð�NSÞ � g½ð1� �Þ�NS�; (3)

where NS is the input mean photon number per mode
(per channel use) and gðNÞ is the entropy of a single-
mode thermal state with mean photon number N: gðNÞ �
ðN þ 1Þlog2ðN þ 1Þ � Nlog2N. The photon-number-
sharing parameter � is the fraction of photons the code
dedicates to quantum resources as compared to classical
resources. This allocation, however, is done within a single
channel use (as a power-sharing strategy), whereas, in a
time sharing strategy, each channel use is dedicated to only
one task at a time. The above result extends to other
important bosonic channels such as the thermal-noise and
amplifier channels [35].

Note thatQ ¼ 0 for �< 1=2, thereby making the ðC;QÞ
trade-off region trivial for �< 1=2. However, for the
ðC;EÞ trade-off with C � 0 and E � 0, trade-off coding
with the Hsieh-Wilde protocol outperforms time sharing
for all values of �.

If � � 1=2 and the minimum-output entropy conjecture
is true, then the rate region defined by (3) is the actual
capacity region [35]. Our proof of optimality is similar to
the optimality proof for the bosonic broadcast channel
[29], a setting in which a sender, at one input port of a
beam splitter, transmits classical data to two receivers at
the two output ports. For the noiseless broadcast channel,
the second beam splitter input is in the vacuum state. In the
broadcast setting, there is always one receiver whose out-
put is less noisy than the other’s (whichever receiver has
the output for which � � 1=2). The techniques for proving
optimality of rates to the less noisy receiver readily apply
when analyzing our setting [35], but we require� � 1=2 in
order to apply them because there is only one receiver in
our setting.

Figure 2 depicts two important special cases of
the region in (3): (a) the trade-off between classical and

quantum communication without entanglement assistance
and (b) the trade-off between entanglement-assisted and
unassisted classical communication. The figure indicates
the remarkable improvement over time sharing that trade-
off coding achieves for the lossy bosonic channel. If NS is
high enough to achieve close to the maximum quantum
capacity log2ð�Þ � log2ð1� �Þ, then the achievable rates
in (3) are much better than those achievable by time shar-
ing between its quantum capacity [8], its classical capacity
[7], and its entanglement-assisted classical and quantum
capacities [17,36,37].
A rule of thumb for trade-off coding.—The quantum

capacity of a lossy bosonic channel with transmissivity
� and mean photon number per mode NS is given by
Qð�;NSÞ ¼ maxf0; gð�NSÞ � g½ð1� �ÞNS�g [8,36,38].
Note that Qð�;NSÞ ¼ 0, 8 � � 1=2, and
limNS!1Qð�;NSÞ¼ log2ð�Þ� log2ð1��Þ�Qmaxð�Þ. In

the context of trade-off coding, the achievable rate be-
comes Qð�; �NSÞ, where � is the fraction of photons
dedicated to quantum resources. ATaylor series expansion
yields Qð�;�NSÞ�Qmaxð�Þ�½�ð1��Þ�NS ln2��1 when
NS is sufficiently high [35]. Thus, in order to
reach the quantum capacity to within � bits, a trade-off
code should dedicate no more than a fraction

FIG. 2 (color online). (a) The ðC;QÞ trade-off: A lossy bosonic
channel with transmissivity � ¼ 3=4 can reliably transmit a
maximum of log2ð3=4Þ � log2ð1=4Þ � 1:58 qubits per channel
use [8], and NS ¼ 200 photons per mode at the channel input is
sufficient to nearly achieve this quantum capacity. A trade-off
coding strategy that lowers the quantum data rate to about 1.4
qubits per use while retaining the same mean photon budget
allows the transmission of an additional 4.5 classical bits per
channel use, while time sharing would only allow for an addi-
tional 1 classical bit per channel use with this photon budget.
(b) The ðC;EÞ trade-off: The sender and the receiver share
entanglement, and the sender would like to transmit classical
information while minimizing the consumption of entanglement.
With a mean photon budget of NS ¼ 200 photons per channel
use, the sender can reliably transmit a maximum of about 10.7
classical bits per channel use while consuming entanglement at a
rate of about 9.1 entangled bits per channel use [17,36,37]. With
trade-off coding, the sender can significantly reduce the entan-
glement consumption rate to about 5 entangled bits per channel
use while still transmitting about 10.5 classical bits per channel
use, i.e., only a 0.08 dB decrease in the rate of classical
communication for a 2.6 dB decrease in the entanglement
consumption rate.

PRL 108, 140501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 APRIL 2012

140501-3



�� ¼ 1=½�ð1� �Þ�NS ln2� to the quantum part of the
code. If the trade-off code dedicates a higher fraction of
the photons than �� to quantum resources, then it is effec-
tively wasting photons which could instead be used to get a
significant amount of classical communication ‘‘for free.’’
As NS increases, the fraction of available photons needed
for the quantum rate to saturate at Qmaxð�Þ becomes
smaller and smaller. So, if a trade-off code abides by the
above rule of thumb, it will nearly saturate Qmaxð�Þ, while
achieving a high classical data rate, as well—
something that is not possible by merely time sharing
between classical (HSW) and quantum (LSD) communi-
cation. A similar rule of thumb applies for entanglement-
assisted classical communication; i.e., it is not necessary to
dedicate a large fraction of the photons to shared entangle-
ment when the photon budget increases [35].

Trading public and private classical resources.—
Analogous trade-off coding results hold for another notable
setting, where a sender would like to transmit both public
and private classical information to a receiver over a bo-
sonic channel (perhaps even with the assistance of a secret
key). These results constitute a relevant benchmark for
satellite-to-satellite (far-field free-space) links, which
might be used for both public communication and quantum
key distribution [39]. We let R denote the rate of public
communication, P the rate of private communication, and
S the rate of secret key generation/consumption. An
achievable rate region for the lossy bosonic channel with
� 2 ½0; 1� is

Rþ P � gð�NSÞ;
Pþ S � gð��NSÞ � g½ð1� �Þ�NS�;

Rþ Pþ S � gð�NSÞ � g½ð1� �Þ�NS�;
(4)

where � 2 ½0; 1�, a photon-number-sharing parameter, is
the fraction of photons dedicated to private classical resour-
ces and NS is the mean input photon number per mode. If
� � 1=2 and the minimum-output entropy conjecture is
true, then this region is the capacity region [35]. We were
able to prove optimality here again by appealing to the
optimality results from the bosonic broadcast channel
[38]. For �< 1=2, the above region remains achievable.
The strategy for achieving the above rate region is to
combine the general-purpose Hsieh-Wilde protocol for
secret-key-assisted communication of public and private
classical information [20] and combine it with the one-
time pad, secret key distribution, and private-to-public
transmission (the ideas here are similar to those for the
CQE trade-off). For the lossy bosonic channel, coherent-
state codewords with each symbol selected according to an
isotropic Gaussian distribution suffice to achieve the above
region [35].

An interesting special case of the above achievable
region is the trade-off between public and private classical
communication. Lemma 3 of Ref. [20] proves that the

classical-quantum trade-off region is the same as the
public-private trade-off whenever the channel is
degradable, which applies here since the lossy bosonic
channel is degradable whenever � � 1=2 [8,38]. These
special cases coincide because ensembles of pure states
suffice for achieving the private classical capacity of
degradable channels [20], further implying in such a case
that the private information is equivalent to the coherent
information. Thus, Fig. 2(a) doubles as a plot of the
public-private trade-off (C ! R, Q ! P). Furthermore,
note that the trade-off between public classical communi-
cation and secret key generation is the same as that be-
tween public and private classical communication,
respectively.
Discussion.—We might attempt to understand why

trade-off coding between classical and quantum commu-
nication performs so well for bosonic channels in the high
photon-number regime by making an analogy with qubit
dephasing channels. It is well-known that, for every �< 1,
the lossy bosonic channel has a finite quantum capacity
even when an infinite number of photons are available [36].
Here, we have seen that we can approach this quantum
capacity with just a small fraction of the total photon
number dedicated to the quantum part of the code. Thus,
one can think loosely of the lossy bosonic channel as being
‘‘composed of’’ a few channels that are good for quantum
transmission while the rest are good for classical trans-
mission. The analogy is that we can combine many
strongly dephasing channels that are only good for classi-
cal data transmission with just a few weakly dephasing
channels that are good for quantum data transmission in
order to approximate the lossy bosonic classical-quantum
trade-off. References [6,22,24] prove that the trade-off
capacity region of any dephasing channel is additive, and
so the resulting region for the combined dephasing channel
is simply the Minkowski sum of those of the individual
channels. However, this understanding is only satisfying in
the very high photon-number regime, when the available
number of photons is much larger than that needed to
saturate the quantum capacity.
Conclusion.—We have shown that achievable rates with

trade-off coding over bosonic channels can be significantly
higher than those achievable from time sharing between
conventional quantum protocols, suggesting that quantum
communication engineers should try to take advantage of
these gains in a practical coding scheme. Our trade-off
regions are optimal for a lossy bosonic channel that trans-
mits on average over half of the photons input to it,
assuming that the minimum-output entropy conjecture is
true. This Letter does not discuss specific codes and struc-
tured optical receivers to attain reliable communications at
rate triples predicted by our achievable trade-off region. In
future work, it would be interesting to lay out the full
transmitter-coding-receiver architecture for optical trade-
off coding.
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