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The recently proposed fermion-bag approach is a powerful technique to solve some four-fermion lattice

field theories. Because of the existence of a duality between strong and weak couplings, the approach

leads to efficient Monte Carlo algorithms in both these limits. The new method allows us for the first time

to accurately compute quantities close to the quantum critical point in the three dimensional lattice

Thirring model with massless fermions on large lattices. The critical exponents at the quantum critical

point are found to be � ¼ 0:85ð1Þ, � ¼ 0:65ð1Þ, and �c ¼ 0:37ð1Þ.
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Strongly interacting quantum critical points containing
massless fermionic excitations are interesting from many
perspectives. Such critical points describe second order
phase transitions in strongly correlated two dimensional
materials such as graphene [1]. The search for critical
points in gauge theories in three spatial dimensions con-
taining massless fermions is interesting in the context of
the physics beyond the standard model [2]. Properties of
these fermionic quantum critical points remain poorly
understood due to a lack of reliable computational tech-
niques. While the renormalization group approach based
on large N or "-expansion techniques can provide a
glimpse of the rich possibilities, accurate Monte Carlo
(MC) calculations are desirable. Unfortunately, MC meth-
ods for lattice field theories with massless fermions in three
or more space-time dimensions continue to be challenging.
For example, the popular hybrid Monte Carlo method [3]
either suffers from sign problems or encounters severe
singularities due to small eigenvalues of the fermion ma-
trix. All hybrid Monte Carlo calculations performed so far
have always relied on extrapolations to the massless limit
which are known to be difficult [4]. As far as we know, MC
calculations close to a quantum critical point with exactly
massless fermions on large lattices do not exist.

Recently, a new approach called the fermion-bag ap-
proach was proposed as an alternative method to solve a
class of lattice field theories with exactly massless fermi-
ons [5]. It is an extension of the meron cluster idea pro-
posed some time ago [6]. The idea behind the fermion bag
is to identify fermion degrees of freedom that cause sign
problems, collect them in a bag, and sum only over them.
This is in contrast to traditional approaches where all
fermion degrees of freedom in the entire thermodynamic
volume are summed to solve the sign problem. When the
fermion bag contains only a small fraction of all the
degrees of freedom and the summation can be performed
quickly, the fermion-bag approach can be used to design

powerful MC methods. Sometimes, the bag splits into
many disconnected pieces, further simplifying the
calculation.
The general idea of the fermion bag can be illustrated

easily with the following example. Consider lattice fer-
mion models formulated with 2n Grassmann variables per
lattice site denoted as c iðxÞ and �c iðxÞ, where i ¼
1; 2; . . . ; n represent flavor indices and x denotes the
Euclidean space-time lattice point containing V sites. Let
D be the V � V free fermion matrix whose matrix ele-
ments are denoted as Dxy. We will assume that the prop-

erties of D are such that the following k-point correlation
function involving the flavor i:

Ciðx1; . . . ; xkÞ ¼
Z
½d �c dc � exp

�X
x;y

�c iðxÞDxyc iðyÞ
�

� �c iðx1Þc iðx1Þ . . . �c iðxkÞc iðxkÞ (1)

is always positive. An example of such a matrix D is the
massless staggered fermion Dirac operator which is popu-
lar in constructing four-fermion lattice models [7]. It is
easy to prove that

Ciðx1; . . . ; xkÞ ¼ DetðDÞDetðG½fxgi�Þ; (2)

where G½fxgi� is the k� k matrix of propagators between
the k sites xp, p ¼ 1; . . . ; k, whose matrix elements are

Gxp;xq ¼ D�1
xp;xq . It is also possible to argue that [5]

Ciðx1; . . . ; xkÞ ¼ DetðW½fxgi�Þ; (3)

where the matrix W½fxgi� is a ðV � kÞ � ðV � kÞ matrix
which is the same as the matrix D except that the sites
fxg � fxp; p ¼ 1; 2; . . . ; kg are dropped from the matrix.

The identity

Det ðDÞDetðG½fxgi�Þ ¼ DetðW½fxgi�Þ (4)

leads to a concept of duality in the fermion-bag approach
as we explain below.
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Consider a generic four-fermion lattice field theory
action involving n massless staggered fermions given by

S ¼ �X
x;y;i

�c iðxÞDxyc iðyÞ

�X
hxyi

X
i;j

Ui;j;hxyi �c iðxÞc iðxÞ �c jðyÞc jðyÞ; (5)

where hxyi refers to some well defined set of neighboring
lattice sites. Furthermore, we will assume that all the
couplings Ui;j;hxyi are non-negative real constants. Many

interesting four-fermion models are of this type [7]. The
partition function can be expanded in powers of the
coupling and is given by

Z ¼
Z
½d �c dc �e�S ¼ X

½fxg�
f½U�pgYn

i¼1

Ciðx1; . . . ; xkiÞ; (6)

where f½U�gp refers to a generic power of the coupling and
ki, i ¼ 1; 2; . . . ; n, refers to the number of interaction ver-
tices for each flavor. On a finite lattice the expansion is
convergent, since it is a polynomial.

The above expansion of the partition function begs for
the following intuitive interpretation. Since the ki inter-
action sites contain both c i and �c i, the ith flavors of the
fermions are already paired on these sites and do not cause
sign problems. On the other hand, unpaired fermions of the
ith flavor that hop freely on the remaining sites can indeed
cause sign problems and need to be summed over to solve
the sign problem. The free sites are collectively referred to
as a fermion bag. The summation of all fermion world
lines inside the bag leads to the weight Ciðx1; x2; . . . ; xkÞ ¼
DetðW½fxgi�Þ, which is the determinant of a ðV � kiÞ �
ðV � kiÞ matrix. This determinant can be evaluated easily
if (V � ki) is small. This is expected at strong couplings,
and hence we refer to these free fermion bags as strong

coupling fermion bags. It was shown in Ref. [5] that at
strong couplings a fermion bag splits into many small
disconnected pieces, making things even simpler. The
left side of Fig. 1 gives an illustration of the disconnected
pieces of a strong coupling fermion bag.
At weak couplings, the above definition of a fermion bag

loses its charm, since V � ki becomes large. However,
thanks to a concept of duality, we can construct the fermion
bag differently. At weak couplings, we can view the inter-
actions as the unpaired fermionic degrees of freedom that
cause fluctuations over the paired free fermionic vacuum.
In this view, the fermions hop from one interaction site to
another interaction site leading to sign problems and need
to be summed over. Now the interaction sites form the
fermion bag. Again the summation of the fermions inside
this dual bag leads to the same weight Ciðx1; x2; . . . ; xkÞ ¼
DetðW½fxgi�Þ ¼ DetðDÞDetðG½fxgi�Þ but now viewed as the
determinant of a ki � ki matrix. Note we have used the
duality relation Eq. (4) here. The determinant can now be
calculated easily, since ki is small at weak couplings.
Hence we refer to these dual bags as weak coupling
fermion bags. The right side of Fig. 1 gives an illustration
of a weak coupling fermion bag. The weak coupling
fermion-bag approach is equivalent to the idea of summing
over all Feynman diagrams and was introduced earlier
in the framework of the diagrammatic determinantal
Monte Carlo method [8]. On the other hand, in our opinion
the fermion-bag approach is more intuitively appealing in
the context of lattice field theories, since it uncovers the
powerful concept of duality and extends to strong
couplings.
The fermion-bag approach is general and can be adapted

to relativistic Wilson fermions and nonrelativistic fermi-
ons. However, in some models the weight of a fermion bag
is no longer a determinant but involves new mathematical

strong coupling fermion bags

Interaction Bonds

Interaction bonds

Weak coupling fermion bag

FIG. 1 (color online). An illustration of a ‘‘fermion-bag’’ configuration at strong couplings (left) and weak couplings (right). The
interactions in this illustration are represented by solid bonds, and the fermion bags are represented by shaded region. At strong
couplings the fermion bag is made up of free sites and breaks up into many disconnected pieces, while at weak couplings the bag
contains interaction sites.
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structures like fermionants [9], which can be exponentially
difficult to compute [10]. In such cases the fermion-bag
approach is not useful. However, these models can be
changed by introducing unconventional interactions (like
six or higher fermion interactions) while still preserving
many interesting symmetries and the corresponding low
energy physics [5]. In these exotic models, the fermion-bag
weight is again a determinant and the fermion-bag ap-
proach becomes useful. Thus, many new fermion models
can be solved with the fermion-bag approach.

As a first application of the new approach, we have
studied the three dimensional massless lattice Thirring
model with two Grassmann valued fields per site denoted
by c ðxÞ and �c ðxÞ. The action is given by

S ¼ �X
x;y

�c ðxÞDxyc ðyÞ �U
X
hxyi

�c ðxÞc ðxÞ �c ðyÞc ðyÞ; (7)

where D is the massless staggered fermion matrix, hxyi
refers to the set of nearest neighbor sites of a cubic lattice,
and U is the coupling that generates the current-current
coupling of the continuum Thirring model. We use anti-
periodic boundary conditions in all three directions. The
lattice model is invariant under a Ufð1Þ �U�ð1Þ symme-

try, where Ufð1Þ is the fermion number symmetry and

U�ð1Þ is the chiral symmetry. When the coupling is small,

the model contains four flavors of massless two-component
Dirac fermions at long distances due to fermion doubling.
When the coupling is large, chiral symmetry breaks spon-
taneously and generates a single massless Goldstone
boson, and the fermions become massive. Thus, the model
contains a quantum critical point Uc, which separates a
phase with massless fermions from a phase with massless
bosons. The quantum critical point has been studied earlier
by using mean field techniques [11] and traditional MC
methods [12–15]. A variant of our lattice model has been
used recently to study a related quantum critical point in
the context of graphene [16].

Close to the quantum critical point, a continuum quan-
tum field theory description of the long distance physics
must emerge. This continuum theory should contain four
flavors of two-component Dirac fermions in three
Euclidean dimensions. As was discussed in Ref. [13], the
lattice interactions generate many continuum four-fermion
interaction terms, and the continuum Lagrange density
takes the form

L ¼ �c iðxÞð ~� � ~rÞc iðxÞ þ fgA½ �c iðxÞ ~�ð�AÞijc jðxÞ�2
þ ~gA½ �c iðxÞð�AÞijc jðxÞ�2g; (8)

where �c iðxÞ, c iðxÞ, i ¼ 1; . . . ; 4, are the four flavors of
two-component Dirac fermion fields, ~� are the three Pauli
matrices, and �A, A ¼ 1; . . . ; 16, are the 16 generators of
the Uð4Þ group in the flavor space under which the free
theory is invariant. Repeated indices are assumed to be
summed over. The couplings gA and ~gA are constrained

only by the lattice symmetries. They take values such that
the Uð4Þ symmetry of the free theory is broken to a
Ufð1Þ �U�ð1Þ subgroup [17]. As far as we know, a renor-
malization group flow analysis in this relatively large but
constrained space of couplings, within a controlled
approximation such as large N or "-expansion, is not
available and should be an interesting topic for future
research. However, the existence of a quantum critical
point in the lattice model does imply that the renormaliza-
tion group analysis will find a nontrivial fixed point with
one relevant direction. Here we compute the critical
exponents at this fixed point through MC calculations.
The fermion-bag approach for the above lattice model

was first developed in Ref. [5], and it was shown that the
partition function can be written as

Z ¼ X
½n�
UNbDetðW½n�Þ; (9)

where ½n� refers to the configuration of Nb interaction
bonds and W½n� is the ðV � 2NbÞ � ðV � 2NbÞ staggered
Dirac matrix restricted to the free sites. These free sites
form the strong coupling fermion bag (see the left side of
Fig. 1). At the quantum critical point, Nb is about one-
eighth of the lattice volume, and hence the above form of
the partition function is not useful. However, thanks to
duality we can think in terms of the weak coupling fermion
bags (see the right side of Fig. 1). For the above model, the
duality relation [Eq. (4)] takes the form

Det ðW½n�Þ ¼ DetðDÞ½Det2ðG½n�Þ�; (10)

where G½n� is an Nb � Nb free fermion propagator matrix
between even and odd lattice sites of the interaction bonds.
Using recent algorithmic advances [18], we have con-
structed an efficient determinantal Monte Carlo algorithm
for this problem [19]. If the autocorrelation times and
equilibration times are measured in units of a sweep, we
find that our algorithm has no further critical slowing-down
even at the quantum critical point.
In order to uncover the properties of the quantum critical

point, we focus on three observables (let L be the lattice
size): the chiral condensate susceptibility [20]

� ¼ 1

2L3

X
x;y

h �c xc x
�c yc yi; (11)

TABLE I. Results from the combined fit of the data to
Eqs. (14). In addition to the above 12 parameters, the fit also
gives Uc ¼ 0:2608ð2Þ, � ¼ 0:65ð1Þ, � ¼ 0:85ð1Þ, and �c ¼
0:37ð1Þ with a �2=d:o:f of 1.3.

f0 f1 f2 f3 �0 �1

2.52(3) �2:53ð5Þ 0.71(3) 0.10(1) 0.369(3) 0.63(1)

�2 �3 p0 p1 p2 p3

0.52(2) 0.09(1) 33.9(2) �5:0ð1Þ �2:0ð2Þ �2:5ð5Þ
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the chiral winding number susceptibility

hq2�i ¼
�
1

3

X
�

ðq2�Þ�
�

(12)

[defined through the conserved chiral charge ðq�Þ� ¼P
x2S"x�x;�ðD�1Þx;xþ� þP

x2S2"x passing through the

surface S perpendicular to the direction �, where
"x ¼ ð1Þx1þx2þx3 ; the staggered fermion phase factors
�x;� ¼ expði��a � xÞ are defined through the 3-vectors

�1 ¼ ð0; 0; 0Þ, �2 ¼ ð1; 0; 0Þ, and �3 ¼ ð1; 1; 0Þ], and the
ratio

Rf ¼ CFðL=2� 1Þ=CFð1Þ (13)

[defined through the fermion two-point function CFðdÞ ¼
1
3

P3
�¼1h �c xc xþd�̂i in which x belongs to a site with "x ¼ 1

and �̂ is a unit vector along each of the three directions].
Since the fermions are exactly massless, in the vicinity of
Uc we expect these three observables to satisfy the follow-
ing simple finite size scaling relations:

��1L2�� ¼ X3
k¼0

fk½ðU�UcÞLð1=�Þ�k; (14a)

hq2�i ¼
X3
k¼0

�k½ðU�UcÞLð1=�Þ�k; (14b)

RfL
2þ�c ¼ X3

k¼0

pk½ðU�UcÞLð1=�Þ�k; (14c)

where we have kept the first four terms in the Taylor series
of the corresponding analytic functions. Our goal is to
compute the critical exponents �, �, and �c at the quan-

tum critical point. Large N calculations usually give � ¼
� ¼ 1 and �c ¼ 0 [7].

Earlier studies of the quantum critical point were
focused on computing � and �. In these studies, the four-
fermion coupling is converted into a fermion bilinear using
an auxiliary field. The fermions are then integrated out, and
the remaining problem is solved by using the hybrid
Monte Carlo method. In order to avoid singularities, all

calculations are done with a finite fermion mass. A close
examination of the earlier work reveals that different
analyses produce substantially different results. However,
the presence of large errors makes everything look consis-
tent. In our opinion, the presence of two infrared scales (the
fermion mass and the length of the box) makes the analysis
difficult. In contrast, since we work with massless fermi-
ons, a single combined fit to Eqs. (14) with 16 parameters
is easy. Indeed, a combined fit of all our data from 123 to
403 lattice gives us � ¼ 0:85ð1Þ, � ¼ 0:65ð1Þ, �c ¼
0:37ð1Þ, and Uc ¼ 0:2608ð2Þ with a �2=d:o:f: ¼ 1:3. The
complete list of the 16 fit parameters are listed in Table I.
Our computation of �c is new.

Plots of our data along with the fits are shown in Fig. 2.
Since our data fit very well to the expected scaling form for
a whole range of lattice sizes, we feel confident that the
corrections to scaling are small.
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