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The dynamics of a capsule and a biological cell is of great interest in chemical engineering and

bioengineering. Although the dynamics of a rigid spheroid is well understood by Jeffery’s theory, that of a

spheroidal capsule remains unclear. In this Letter, the motion of a spheroidal capsule or a red blood cell in

creeping shear flow is investigated. The results show that the orientation of a nonspherical capsule is

variant under time reversal, though that of a rigid spheroid is invariant. Surprisingly, the alignment of a

nonspherical capsule over a long time duration shows a transition depending on the shear rate, which can

be utilized for a particle-alignment technique. These findings form a fundamental basis of the suspension

mechanics of capsules and biological cells.
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About a century ago, Jeffery analytically derived the
motion of a nonspherical object in creeping linear back-
ground flow [1]. Since then, Jeffery’s theory has been used
to describe the alignment of rods and ellipsoids, such as
bacteria, platelets, etc. The theory states that the trajectory
of a non-Brownian rigid ellipsoid in Stokes flow is invari-
ant under time reversal and that reorientation over a long
time duration does not occur under simple shear flow
conditions. The time reversibility can be destroyed by
introducing inertia effects [2] or viscoelastic properties of
the surrounding fluid [3], because the motion is no longer
independent of time in these cases. However, the effect of
particle deformability on the time reversibility is not well
clarified. This study investigates this question by using a
capsule as a model deformable object.

A capsule is a liquid drop enclosed by a deformable
membrane, which is of great interest in the chemical
engineering, bioengineering, and food industries. Many
capsules in realistic situations are not perfect spheres be-
cause of the inhomogeneity of the membrane properties or
folding due to unbalanced osmotic pressure. If one places a
nonspherical capsule in creeping shear flow, how does the
orientation change relative to the flow field over a long
time duration? Jeffery speculated that an ellipsoid may
alter its orientation so that the viscous energy dissipation
of the system becomes minimal [1]. However, this may not
be true for a capsule with a large deformation. Although
many former studies have examined the dynamics of a
nonspherical capsule [4–8], none of them can answer this
question.

In this Letter, the motion of a non-Brownian spheroidal
capsule or a red blood cell (RBC) in creeping shear flow is
investigated numerically. The results show that the orien-
tation of a nonspherical capsule is variant under time
reversal, although the orientation of a rigid ellipsoid is
invariant. Surprisingly, the alignment of a nonspherical
capsule over a long time duration shows a transition

depending on the shear rate. The transition cannot be
explained by the minimum energy dissipation, as specu-
lated by Jeffery; the full fluid and solid mechanics are
necessary to understand this phenomenon. The obtained
results can be utilized for particle-alignment techniques in
engineering applications and shed light on the complex
dynamics of capsules and biological cells.
A capsule is assumed to be filled with an incompressible

Newtonian fluid of viscosity �� and freely suspended in
another fluid with the same density but viscosity �. When
the thickness of the capsule wall is small compared to its
size and radius of curvature, the membrane can be modeled
as a 2D hyperelastic surface without bending rigidity. In
this study, we use two kinds of constitutive laws for the
membrane: the neo-Hookean (NH) law [9] and the Skalak
(SK) law [10]. The NH law describes isotropic volume-
incompressible rubberlike material properties, whereas the
Skalak law expresses the area incompressibility of a bio-
logical membrane.
To calculate capsule deformation accurately, fluid-

structure interactions between the motion of the internal
and external fluids and that of the capsule membrane have
to be solved precisely. We assume that the flow is
Stokesian, i.e., inertia-free, and the flow field is solved by
a boundary element method. A finite element method is
employed to solve the membrane mechanics. The govern-
ing equations and numerical methods are the same as in
Refs. [6,11], and the details are explained in Ref. [12]. The
reference shape of the capsule is assumed to be spheroid or
biconcave, in the same manner as in Refs. [5,6]. The aspect
ratio between the principal axes of the spheroid is repre-
sented by �. A linear triangular mesh with 5120 elements
is used to discretize the membrane. The validation of the
numerical methods is presented in Ref. [12].
In a Cartesian reference frame with the capsule center as

the origin, the undisturbed linear background flow v1 can
be described as v1 ¼ ðEþ�Þ � x, where E and� are the
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rate of strain and rotation tensors, respectively. In this
study, we use two types of background flow: (a) a simple

shear flow given by Exy ¼ Eyx ¼ �xy ¼ ��yx ¼ _�
2 (all

the other components ¼ 0), as shown in Fig. 1(a), and

(b) an oscillatory planar elongational flow given by Exy ¼
Eyx ¼ _�

2 cos!t (all the other components ¼ 0), as shown

in Fig. 1(b). Here, _� is the shear rate or the elongational
rate, t is the time, and ! is the angular velocity of the flow,
which is correlated to the oscillation period T as T ¼
2�=!. The capillary number Ca represents the ratio of
the viscous force to the elastic force and is given by Ca ¼
�‘ _�=Gs, where Gs is the membrane shear modulus and ‘
is the radius of a sphere that has the same volume as the
ellipsoid or the biconcave capsule.

We first investigate the motion of a spheroidal oblate
capsule in simple shear flow and compare the results with
those of a rigid spheroid. To examine the capsule orienta-
tion efficiently, we define the orientation vector e as a unit
vector extending from the center of gravity and pointing to
material point P located at the revolution axis of the
unstressed spheroidal capsule. � is defined as the angle
between e and the z axis, as shown in Fig. 1(c). At time
t ¼ 0, the oblate capsule without prestress is placed at an
initial angle �0 of �=4. The deformation at time t > 0 due
to the background shear is calculated until the steady
periodic motion is achieved.

The motions of an oblate capsule with Ca ¼ 0:3 and 1.0
are shown in Fig. 2(a) and 2(b), respectively (� ¼ 0:6,
� ¼ 1, and NH membrane). The time history of � is also
shown in Fig. 2(c) for 30 periods of rotation. The results of
a rigid spheroidal with the same� [1] are also plotted in the
figure for comparison. Because of the nonspherical refer-
ence shape of the capsule membrane, � oscillates twice
during one rotation. In addition to the short-time oscilla-
tion, � tends to approach towards 0 or �=2, depending on
Ca, over a long time duration. The reorientation of the
capsules is also clear in observing Figs. 2(a) and 2(b),
because the material point P, which is indicated as a blue
dot in the figures, moves towards z ¼ 0 when Ca ¼ 0:3,
whereas it moves towards the z axis when Ca ¼ 1:0. We
note that the final orientation is independent of the initial
orientation; this was confirmed numerically by changing

the initial orientation randomly. Such reorientation did not
happen for a rigid spheroid, as shown in Fig. 2(c). These
results clearly illustrate that a deformable capsule becomes
reoriented, even in simple shear flow, and the time revers-
ibility of Jeffery’s orbit can be destroyed by introducing
particle deformability.
The results of Fig. 2 raise another important question

about why the reorientation direction shows a transition
with increasing Ca. We calculated the viscous energy dis-
sipation due to the capsule motion to determine whether
the transition occurred to minimize the dissipation energy.
However, we did not observe a one-to-one correlation
between the capsule reorientation and the minimum energy
dissipation. Thus, the full fluid and solid mechanics must
be examined to answer this question.
To understand the basic mechanism of the transition, we

further simplify the background flow field by deleting the
rotational contribution from the shear flow. When an oblate
capsule with an arbitrary initial orientation is subjected to
steady planar elongational flow, the orientation is finally
directed towards the compressing direction in all cases.
Given that the reorientation transition does not appear in
steady planar elongational flow, the unsteadiness in the
flow field likely plays an important role in the transition.
Next, we apply oscillatory planar elongational flow,

given by Fig. 1(b), to an oblate capsule. In this flow field,
the elongational rate and changing frequency of the elon-
gational direction can be independently controlled. At
t ¼ 0, the oblate capsule without prestress is placed at
�0 ¼ �=4. The capsule motions for the second period of
oscillation with !=ð _��Þ ¼ 0:08 and Ca ¼ 0:3 and 1.0 are
shown in Figs. 3(a) and 3(b) (� ¼ 0:6, � ¼ 1, and NH

FIG. 1. Schematic illustration of a capsule in (a) simple shear
flow and (b) oscillating planar elongational flow. (c) Orientation
vector e is defined as a unit vector extending from the center of
gravity and pointing to material point P. � is defined as the angle
between e and the z axis.

FIG. 2 (color). Oblate capsule in a simple shear flow with
(a) Ca ¼ 0:3 and (b) 1.0 (� ¼ 0:6, � ¼ 1, and NH membrane).
Blue and red dots are material points on the membrane and are
plotted as tracers. (c) Time change of �, where the result of a
rigid spheroid with same � [1] is also plotted for comparison.

PRL 108, 138102 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 MARCH 2012

138102-2



membrane). Color contours show the distribution of �1,
where �i is the in-plain principal elastic tension and �1 �
�2. The time history of � is also shown in Fig. 3(c) for 30
periods of oscillation. When Ca ¼ 0:3, � approaches to
�=2 after a sufficient time duration, whereas when Ca ¼
1:0, � approaches to 0. For Ca ¼ 0:3, the capsule deforma-
tion is small at t=T ¼ 1:25 and 1.75, when there is no
background flow, and the �1 distributions at t=T ¼ 1:0 and
1.5 are similar. For Ca ¼ 1:0, however, large deformations
remain at t=T ¼ 1:25 and 1.75, resulting in a strong asym-
metry in the �1 distribution between t=T ¼ 1:0 and 1.5.
Thus, the deformation is strongly affected by the time
history in the high Ca regime, whereas it is quasisteady
in the low Ca regime. This qualitative difference in the
tension distribution likely causes the reorientation transi-
tion. When Ca is very small, the capsule should behave like
a rigid body. In order to confirm the convergence, we
calculate drift time Td required for drifting from � ¼
�=4 to �=2 and plot it in Fig. 3(d). We see that _�Td

increases rapidly as Ca is decreased, indicating conver-
gence to the rigid body motion.

To clarify the reorientation phenomena in more detail,
we plot a phase diagram of the final orientation as a
function of Ca and != _��. The oblate capsule is again
subjected to the oscillatory planar elongational flow with
�0 ¼ �=4. The computation is carried out for N periods of
oscillation, and N is set to 30, as in Fig. 3(c). The con-
vergence of the final angle is determined by the following
equation: j�30 � �fj � �, where �30 is the average orien-

tation vector of the 30th rotation, and �f ¼ 0, �=2, or �0.

The threshold value of � ¼ 0:05 is used in this study,
because the results with � ¼ 0:1 and 0.05 are almost the

same. When the convergence criteria is not satisfied, we
determined that the reorientation is in the transit regime.
The results of the phase diagram are shown in Fig. 4. The

red region (�30 � �0) indicates the rigid body motion or
high frequency oscillation. When ! is very large, the
capsule has little time to deform, which results in no
obvious reorientation. When Ca ! 0, the capsule motion
converges to the rigid body motion. Figure 3(d) indicates
that the red region also appears in the Ca< 0:001 regime
when != _�� ¼ 0:08, though the diagram in this small Ca
region is not plotted due to extremely high computational
load. The green region (�30 � �=2) indicates the quasis-
teady deformation. This region appears when ! is small,
including the steady planar elongation (! ¼ 0). The ma-
genta region indicates infinite stretching. This region
appears only when the membrane is strain-softening,
such as NH membrane. A strain-hardening membrane
can avoid this problem [13]. The black region (�30 � 0)
indicates large unsteady deformation. This region appears
only when the capsule is subjected to the large elongation
with the moderate oscillating frequency. The phase dia-
gram may be slightly affected by the selection of N. Since
N is limited in terms of the computational cost, we cannot
technically increase N ! 1. These results clearly illus-
trate that the convergence of � ! 0 appears only when the
large deformation is affected by the time history.
In the case of shear flow, the elongational direction

relative to the material point on the membrane oscillates
with the angular velocity of the membrane motion. Thus,
one may assume ! as the average rotational velocity of a
capsule in shear flow and draw the curve shown in Fig. 4.
The results of an oblate capsule in shear flow, shown in
Fig. 2, are plotted in Fig. 4 by circles. A curve with small

FIG. 3 (color). Motion of an oblate capsule in oscillating
planar elongational flow with !=ð _��Þ ¼ 0:08 and
(a) Ca ¼ 0:3 or (b) Ca ¼ 1:0 (� ¼ 0:6, � ¼ 1, and NH mem-
brane). A black dot is placed at P as a tracer. (c) Time change of
�, where the result of a rigid spheroid with the same � [1] is
plotted for comparison. (d) Dimensionless drift time in the small
Ca regime.

FIG. 4 (color). Phase diagram of the oblate capsule in oscillat-
ing elongational flow (� ¼ 0:6, � ¼ 1, and NH membrane). The
circles in the figure indicate the converted results of the shear
flow case.
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Ca exists in the � ! �=2 region, whereas a curve with
large Ca exists in the � ! 0 region. These results indicate
that the reorientation transition found in the shear flow can
also be explained by using Fig. 4.

Finally, we investigate the reorientation of a RBC in
shear flow. The RBC membrane is modeled by the SK law
with C ¼ 10, where C is the ratio of area dilation to the
shear modulus. Here we also investigate the effect of the
viscosity ratio �. Initially, the RBC is set to �0 ¼ �=4. The
results of Ca ¼ 2 and � ¼ 1 are shown in Fig. 5(a).
Material point P, indicated as a blue dot in the figure,
shifts to the z axis, i.e., � ! 0, for large Ca. When Ca
was small, on the other hand, we confirmed that � ! �=2
in the same manner as the spheroidal capsule (data not
shown). When � ¼ 0, the RBC membrane has a pure tank-
treading motion, and the membrane no longer oscillates
during the rotation. When � � 0, on the other hand, the
RBC shows a swinging motion, and the membrane oscil-
lates during the rotation.

To effectively discuss the effect of � and the constitutive
law on the reorientation transition in shear flow, we define
critical values of Ca: Ca�=2 indicates the maximum Ca

value to show �30 � �=2 convergence, and Ca0 indicates
the minimum Ca value to show �30 � 0 convergence. The
results of a RBC as well as spheroidal capsules with
� ¼ 0:4 and 0.6 and with two types of membrane constit-
utive laws are shown in Fig. 5 as a function of �. Ca�=2 and

Ca0 tend to decrease as � increased. This is because the
time history of deformation remains for a longer time as
the inside viscosity increased, which leads to the transition
in the smaller Ca conditions. The figure also indicates that
the effect of the constitutive law is considerable. A capsule
with the SK membrane tends to have a larger critical Ca0
than that with the NH membrane. This is because the SK
law shows the strain-hardening property, whereas NH law
shows the strain-softening, so large deformations are sup-
pressed by the SK membrane. Thus, the reorientation
transition can be understood by considering the fluid and
solid mechanics of capsule deformation.
In Fig. 5, experimental conditions of Refs. [7,8] are

plotted by gray and magenta regions, respectively, by
assuming � ¼ 11–59 mPa � s, _� ¼ 800 s�1 for Ref. [7]
or 22–47 mPa � s and _� ¼ 5 s�1 for Ref. [8], and Gs ¼
4 �N=m and ‘ ¼ 2:82 �m for both cases. We see the
experimental conditions of Ref. [7] are above Ca0, where
our model shows the pure tank-treading motion as in
Ref. [7]. The experimental conditions of Ref. [8] are below
Ca�=2, where our model shows the swinging motion as in

Ref. [8]. Thus, the present results can nicely explain the
difference of two former experimental observations by
Refs. [7,8], even without introducing any inertial effect.
We also note that the phase transition during reorientation
is observed for a prolate spheroidal capsule, although the
results are not included here. Thus, the reorientation tran-
sition is robust regardless of the reference shape of the
capsule.
The results obtained in this study illustrate that the

reorientation transition appears in a wide variety of artifi-
cial and biological capsules. Given that the transition can
be controlled by adjusting the background flow strength as
well as the unsteadiness in the background flow direction,
the results obtained here can be utilized for particle-
alignment techniques in engineering applications, such as
counting nonspherical particles by light scattering, making
anisotropic materials, etc. These findings form a funda-
mental basis for the suspension mechanics of capsules and
biological cells.
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