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The motion of a cantilever near sample surfaces exhibits additional friction even before two bodies

come into mechanical contact. Called noncontact friction (NCF), this friction is of great practical

importance to the ultrasensitive force detection measurements. The observed large NCF of a micron-

scale cantilever found an anomalously large damping that exceeds theoretical predictions by 8–11 orders

of magnitude. This finding points to a contribution beyond fluctuating electromagnetic fields within the

van der Waals approach. Recent experiments reported by Saitoh et al. [Phys. Rev. Lett. 105, 236103

(2010)] also found a nontrivial distance dependence of NCF. Motivated by these observations, we propose

a mechanism based on the coupling of a cantilever to the relaxation dynamics of surface defects. We

assume that the surface defects couple to the cantilever tip via spin-spin coupling and their spin relaxation

dynamics gives rise to the backaction terms and modifies both the friction coefficient and the spring

constant. We explain the magnitude, as well as the distance dependence of the friction due to these

backaction terms. Reasonable agreement is found with the experiments.
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Introduction.—Friction is one of the most widely per-
ceived but least understood phenomena in nature. Friction
is ubiquitously seen around us at the macroscale. One
might expect, however, that new insights will be gained
by investigating friction mechanisms at the small scale and
short distances. Indeed, recent advances in nanotechnology
have enabled the study of friction on the nanoscale [1],
where a novel form of friction has been discovered,
namely, noncontact friction (NCF) [2–4]. This kind of
friction occurs when two objects are in close proximity
but not in physical contact. NCF is of great practical
importance for the modern development of ultrasensitive
force detection devices [5,6]. The precision of these mea-
surements may be ultimately limited by the effects of NCF.

The origin of NCF is still under debate. One proposal
was that it is the friction resulting from Ohmic losses
mediated by fluctuating electromagnetic fields. It turns
out be 8–11 orders of magnitude smaller than that observed
in experiments [2,3,7,8]. Several alternative mechanisms
have been proposed in recent years (see[9] and references
therein), but the problem remains unsolved. More recently,
systematic studies of NCF between a cantilever tip and the
sample surface have been performed on metallic, insulat-
ing, and superconducting materials at different tempera-
tures using hard cantilevers [10] (as opposed to soft
cantilevers [3]). These studies found that at low tempera-
tures, the friction coefficient caused by a superconducting
sample is an order of magnitude larger than that of an
insulating sample, which is in contradiction with the pre-
vious theoretical prediction that NCF generically scales
with the resistivity of the sample [9]. Furthermore, a uni-
versal feature has been identified in these experiments [10],
namely, at low temperatures, while the induced spring

constant increases monotonically with decreasing distance;
the friction coefficient displays a maximum at a certain
distance of a few nanometers. Such a feature has been
consistently observed in insulating materials, as well as
superconducting materials, both below and above the
superconducting transition temperature.
In this Letter, we propose an explanation for these

experimental findings [10]. Specifically, we propose that
the observed behavior of NCF is due to the relaxation
dynamics of the surface defects (see Fig. 1). (i) First, we
lay out the general formalism. It is illustrated by consider-
ing localized spins. We assume that spins remain
unscreened due to the insulating or superconducting gap.
We assume that cantilever also carries localized spins that
couple to the collection of spin sites on the surface of the
sample, which have the characteristic relaxation time �d as
function of the tip-sample distance d. We model this
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FIG. 1 (color online). Illustration of a proposed mechanism
that gives rise to the noncontact friction between the cantilever
tip and the sample surface: A randomly distributed defect
spins on the sample surface interacting with the spins residing
on the tip.
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relaxation time as a collection of Debye relaxors with
distributed relaxation times that results in a typical glass-
like backaction dynamics; see below. An analysis of the
experimental data indeed indicates a distribution of relaxa-
tion times [10]. Alternatively, defects can be local charged
sites. In that case, the charging and uncharging dynamics
of the defects lead to the random electric field probed by a
cantilever. (ii) Using our general formalism, we then ex-
tract from experimental data the distance dependence of
the tip-sample coupling AðdÞ and relaxation time �d. AðdÞ
can be fitted by simple power laws, but �d displays surpris-
ing behavior. For an extremely hard cantilever at a low
temperature, a clear divergence in �d is observed. Weaker
singularities are seen for moderately hard cantilevers. We
propose an explanation for such behavior. (iii) We show
next that the combined effect of the variation of the tip-
sample coupling and the relaxational dynamics on the
sample surface explains the observed distance dependence
of the friction coefficient and the induced spring constant.
We also estimate the order of magnitude of the friction
coefficient, and the experimentally observed values can be
easily achieved in our framework.

Formalism.—We model the tip of the cantilever by a
massive particle with effective mass m, moving in a one-
dimensional harmonic potential V ¼ 1

2 kx
2. Here k is the

spring constant and x is the displacement. We consider that
there are some randomly distributed active degrees of free-
dom on the sample surface that interact with the tip.
Generically, such an interaction will then produce a fric-
tional force, damping the motion of the tip. The tip motion
is thus governed by the generalized Langevin equation,

m
d2

dt2
xðtÞ þ kxðtÞ þ

Z t

t0

�ðt� t0Þ d

dt0
xðt0Þdt0 ¼ FxðtÞ; (1)

with �ðtÞ indicating the backaction term that we write as a
dynamical damping. There is also a residual random force
FxðtÞ that fluctuates rapidly. For an equilibrium system, the
frictional force and the random force are connected by the
fluctuation-dissipation theorem [11,12],

�ð!Þ ¼ 1

kBT

Z 1

0
dte�i!thFxðt0ÞFxðt0 þ tÞi; (2)

where �ð!Þ is the Fourier transform of �ðtÞ, i.e.,�ð!Þ ¼R1
0 dte�i!t�ðtÞ. �ð!Þ is generally a complex function. One

can write it as �ð!Þ � �ð!Þ � i
! kintð!Þ. The real part �

describes the effect of dissipation, and the imaginary
part leads to a modification of the spring constant. � ¼
�0 þ �int, with �0 the intrinsic cantilever friction and �int

the NCF resulting from the tip-sample interaction.
Spin-spin interaction.—The mechanism we consider is

quite general. It applies to interactions in different chan-
nels, e.g., spin or charge. To be concrete, we will study in
detail the spin-spin interaction. Since essentially the same
relaxational behavior was observed in superconductors
(NbSe2) and insulators (SrTiO3) [10], spin-spin interaction

is also a plausible choice. We notice that the spin relaxation
of surface magnetic defects is regarded as the origin of 1=f
flux noise in superconducting devices [13–15].
We consider that there are randomly distributed local-

ized spins on the sample surface and they interact with the
spin localized on the tip, with a Hamiltonian H ¼P

iaJ
a
i ðxÞSatipSai . Here Satip is the spin operator on the tip,

Sai is the spin operator on the sample surface, and the
coupling Jai can be of different types, e.g., Ising or
Heisenberg. The force in the x direction is Fx ¼
�@H=@x. �ð!Þ thus reads

�ð!Þ ¼ 1

kBT
lim

x;x0!0

Z 1

0
dtei!t @

@x

@

@x0

� X
ijab

hJai ðxÞJbj ðx0ÞSatipð0ÞSai ð0ÞSbtipðtÞSbj ðtÞi: (3)

The spins on the sample surface interact with each other,
and the tip spin provides an external magnetic field H for
the surface spin system. The Hamiltonian of the surface
spin system is thus of the form,H surf ¼ �P

i�jJ
a
ijS

a
i S

a
j �P

iH
a
i S

a
i . The effect of the external field on the dynamics of

spins is that it will change the relaxation time �; see below.
The surface spin system displays disordered behavior,
where the cross correlations vanish and the dynamics
is characterized by the autocorrelation function, with
hSai ðtÞSaj ð0Þi ¼ qðtÞ�ij.

We note that the dynamics of the spins on the sample
surface is much faster than that of the tip spin due to the
significantly higher density of scattering centers at the
surface; hence, cantilever spin can be viewed as static.
�ð!Þ can then be factorized into two parts,

�ð!Þ ¼ Cs

kBT
AðdÞSdð!Þ: (4)

The prefactor Cs comes from spin degeneracy. The
frequency-independent tip-sample coupling, AðdÞ ¼
limx!0h

P
i½ @@x Jai ðxÞ�2i, increases monotonically with de-

creasing d. Introducing a defect density �ðrÞ ¼P
i�ðr�RiÞ, which has the average value h�i ¼ nimp,

one obtains AðdÞ ¼ hR dr�ðrÞJ0ðrÞ2i ¼ nimp

R
drJ0ðrÞ2.

Here we have defined J0ðrÞ ¼ P
i limx!0

@
@x JiðxÞ�ðr�RiÞ.

The surface spin susceptibility Sdð!Þ ¼R1
0 dte�i!thSai ð0ÞSai ðtÞi is related to the response function

Cði!nÞ ¼
R�
0 d�e

�i!nthSai ð0ÞSai ðtÞi by the classical form of

the fluctuation-dissipation theorem <Sð!Þ ¼
ðkBT=!Þ=Cð!Þ, or Sð!Þ ¼ �iðkBT=!ÞCð!Þ.
The interactions among the surface spins are random,

leading to glassy behavior. Experiments also indicate a
distribution of relaxation times [10]. We thus assume
Cð!Þ to have the usual phenomenological form typical
for a glass system Cð!Þ ¼ C0=ð1� i!�dÞa, with the ex-
ponent 0< a � 1, and the relaxation time �d [16–18].
�ð!Þ now takes the form
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�ð!Þ ¼ �i
C1

!
AðdÞ 1

ð1� i!�dÞa : (5)

For cantilevers with a high quality factor [10], the intrinsic
cantilever friction can be ignored. Defining AðdÞ ¼
C1AðdÞ, with C1 ¼ CsC0, the NCF thus reads

!�intð!Þ ¼ AðdÞ sin½a arctanð!�dÞ�
ð1þ ð!�dÞ2Þa=2

; (6)

and the induced spring constant is

kintð!Þ ¼ AðdÞ cos½a arctanð!�dÞ�
ð1þ ð!�dÞ2Þa=2

: (7)

Their ratio

!�int=kint ¼ tan½a arctanð!�dÞ� (8)

depends only on the relaxation dynamics of surface defects.
We first extract !�d from the experimental data using
Eq. (8), and then calculate the tip-sample coupling AðdÞ
from Eq. (6) or Eq. (7). The results are shown in Fig. 2.

We approximate the effect of the tip spin as producing an
uniform magnetic field Hd on the sample surface.
When the spin-spin interaction decays with distance as

JðlÞ � l��, one has AðdÞ � ðd2 þ r20Þ��, and Hd � ðd2 þ
r20Þ�=2, with r0 a cutoff. If JðlÞ � expð�l2=r2AÞ, then AðdÞ �
expð�2d2=r2AÞ and Hd � expð�d2=r2AÞ. AðdÞ can be fit

with simple power laws [see Figs. 2(c), 2(g), and 2(k)].

Noticing Hd �
ffiffiffiffiffiffiffiffiffiffi
AðdÞp

, we also extract the field depen-
dence of the relaxation time in Figs. 2(b), 2(f), and 2(j).
The most surprising result is that for NbSe2, probed by an
extremely hard cantilever (resonance frequency f0 ¼
300 kHz), the relaxation time shows a clear divergence
when approaching certain field strength. This indicates that
the surface spin system falls into the mean field university
class and is consistent with the behavior represented by the
long-range, weakly interacting Husimi-Temperley model
(see Supplemental Material[19]). In this model, as one
increases the magnetic field, the free energy changes
from a double well structure to a single well structure,
and the metastable minimum and the barrier combine at
a certain value of field strength to form a saddle point,
known as the spinodal point. Near the spinodal point
H ¼ HSP, the relaxation of the system slows down dra-

matically, �� jH �HSPj�1=2 [20,21]. We use these pre-
dictions to model spin behavior here. The experimental
result of !� for NbSe2 with f0 ¼ 300 kHz can be fitted by
such a mean field form [see Fig. 2(b)]. In models with
shorter range interactions, the change in relaxation time is
smeared

FIG. 2 (color online). Relaxation time, tip-sample coupling, and friction at low temperature T ¼ 4:2 K for (i) NbSe2 and f0 ¼
300 kHz, (ii) NbSe2 and f0 ¼ 31:6 kHz, (iii) SrTiO3 and f0 ¼ 31:6 kHz, from top to bottom. The star and diamond are the
experimental value (data by Saitoh et al.) [10]. The dashed lines denote where �int has a maximum. We use Eq. (6) to fit �int. The glass
exponent is chosen to be a ¼ 0:9. Since Hd / ffiffiffiffiffiffi

Ad

p
, we use Ad as a measure of the magnetic field Hd, and define ~Hd � ffiffiffiffiffiffi

Ad

p
. For case

(i), !�d ¼ CL;Rj ~Hd �HSPj�1=2, with CL ¼ 0:12, CR ¼ 0:04. For cases (ii) and (iii), !�d ¼ C exp½�ð ~Hd �HSPÞ2=H2
0� with CðiiÞ ¼

0:6, HðiiÞ
SP ¼ 9, HðiiÞ

0 ¼ 11:4 and CðiiiÞ ¼ 0:1, HðiiiÞ
SP ¼ 4, HðiiiÞ

0 ¼ 8:9. The tip-sample coupling AðdÞ ¼ A0ðd2 þ r20Þ��, with �ðiÞ ¼ 3,

AðiÞ
0 ¼ 2:3� 105, rðiÞ0 ¼ 4:8; �ðiiÞ ¼ 1:5, AðiiÞ

0 ¼ 6:0� 103, rðiiÞ0 ¼ 2:2; and �ðiiiÞ ¼ 3, AðiiiÞ
0 ¼ 7:5� 107, rðiiiÞ0 ¼ 8:2. We notice that for

case (i) there is a jump in Ad, which is ‘‘inherited’’ from the singularity in !�d, and would disappear in a more realistic modeling. The
high temperature result is included in the Supplemental Material [19].
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[22–24], as can be seen in Figs. 2(f) and 2(j) for the two
cases with f0 ¼ 31:6 kHz. They can be fitted by an ex-
ponential, � ¼ �0 exp½�ðH �HSPÞ2=H2

0�, for H >HSP.

The maximum in �int can be understood as a result of
enhanced relaxation time near the spinodal point. In the
region !� � 1, while kint ’ AðdÞ increases monotonically
with decreasing d, �int ’ aAðdÞ!�d is determined by the
competition between AðdÞ and �d. When �d is singular, �int

is determined predominantly by �d near HSP, and the
maximum is located right at the spinodal point. When the
singularity in �d is smeared, due to the distance depen-
dence of tip-sample coupling, the maximum moves
away from the spinodal point toward smaller d [see
Figs. 2(d), 2(h), and 2(l) for the numerical fit].

Let us now estimate the order of magnitude for the
friction coefficient. Friction is essentially determined by
the following three factors: the tip-sample interaction
energy J, the surface impurity density nimp, and the char-

acteristic energy scale of the surface susceptibility
EC � 1=hSdð!Þi. Including spin degeneracy, one can write
the friction term as!0�int ’ s2S2nimpJ

2=EC. The prefactor

s2S2 is about 1–10. Assuming that there are about 5 impu-
rities per square nanometer, to get the experimental value
of !0�int, which is about 100 N=m for d ’ 2 nm [10],
one needs to have J2=EC ’ 10–100 eV. If we take Ec to
be of order kBT, where T ¼ 4:2 is the temperature at
which the experiment is performed [10], then Ec ’ 3�
10�4 eV, and the coupling is J ’ 3–30 meV, which can be
achieved.

Charge-charge interaction.—For completeness, we also
consider the possibility that friction arises from interac-
tions in the charge channel, though this mechanism may
not apply for [10]. We notice that, as was shown in [25], the
coupling between charge on the cantilever tip and ion
vibrations on the sample surface can produce a strong
enhancement of NCF. This mechanism may be responsible
for the observed NCF in [3,26].

Essentially same logic outlined earlier applies with ob-
vious substitution of Coulomb interactions for spin inter-
actions. We assume there are some randomly distributed
two-level fluctuators on the sample surface, formed from
localized electronic trap states [27,28]. The charge on the
tip of the cantilever provides an external electric field,
favoring one of the two states. The two-level fluctuators
are now governed by the Hamiltonian, H surf ¼
�P

i�jJijQiQj �
P

iViQi, with charge Qi ¼ 0; 1, the cou-

pling Jij is a random number, and Vi is the electric poten-

tial created by the tip charge.
The result is qualitatively the same as the case with spin-

spin interactions, though the order of magnitude can be

different. Here!0�int ’ q2nimpJ
2
ðeÞ=E

ðeÞ
C . For d ’ 2 nm, the

Coulomb potential is JðeÞ ’ 0:3 eV. Taking EðeÞ
C ’ kBT ’

3� 10�4 eV, to get the experimental result of !0�int ’
100 N=m, one needs to have q2nimp ’ 2, with q the tip

charge in the unit of the elementary charge e, and nimp the

number of surface charges per square nanometer. This can
be easily achieved.
Conclusion.—In conclusion, we have proposed a general

mechanism to explain the distance dependence of the
friction coefficient and the induced spring constant of an
oscillating cantilever. A universal ingredient of the pro-
posed mechanism is the backaction effects of relaxational
dynamics of the defects on the sample surface. This
mechanism also explains nicely the observed order of
magnitude of the friction coefficient. Furthermore, our
formalism provides a general framework for experimen-
talists to extract separate information about tip-sample
coupling and surface dynamics, thus enabling a more de-
tailed investigation of surface properties. One way to test
our theory would be to examine the magnetic field depen-
dence of the friction coefficient and the induced spring
constant.
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