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The inertia of particles driven by the turbulent flow of the surrounding fluid makes them prefer certain

regions of the flow. The heavy particles lag behind the flow and tend to accumulate in the regions with less

vorticity, while the light particles do the opposite. As a result of the long-time evolution, the particles

distribute over a multifractal attractor in space. We consider this distribution using our recent results on

the steady states of chaotic dynamics. We describe the preferential concentration analytically and derive

the correlation functions of density and the fractal dimensions of the attractor. The results are obtained for

real turbulence and are testable experimentally.
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Recently the problem of the distribution of inertial par-
ticles in homogeneous turbulence has received a lot of
attention from researchers [1–13]. This is largely due to
the breakthrough in the theoretical understanding of the
Lagrangian motion of particles in the flow that occurred
lately [14]. While the understanding of the behavior of
particles that have negligible inertia and follow the flow is
quite complete by now [14], the understanding of the
behavior of inertial particles is still insufficient. Such
understanding is especially important because the subject
has an extremely wide range of applications: the flows of
fluids are typically turbulent and often laden with external
particles. Theoretical advancement was made mainly for
the case of a small Stokes number (St), where the inertia is
weak and the particles ‘‘almost’’ follow the flow. Even in
this limit of small Stokes numbers, the particles’ distribu-
tion is highly nontrivial. Particles’ deviations from the
surrounding flow accumulate with time, bringing particles
to a strange attractor in space. This attractor is multifractal
and the only theoretical result obtained so far for the real
turbulent flow was the derivation of the correlation codi-
mension [4]. Here a result obtained for real turbulence is a
result obtained without modeling turbulence and expressed
in terms of the (unknown) statistical properties of turbu-
lence. Since the statistics of turbulence is largely unknown
[15], then to obtain such a result, one needs to make
universal predictions on particles’ behavior in the flow
independent of the details of the statistics of that flow.

In this Letter, we provide the complete description of the
distribution of particles in real turbulence at small Stokes
numbers, describing both the correlation of the particles’
density with the surrounding flow and the statistics of the
singular density on the attractor. We give a number of
predictions that are testable experimentally.

The idea that particles’ inertia leads to inhomogeneous
spatial distribution dates back to the seminal paper by
Maxey [2]. It was observed that due to inertia, heavy
particles are pushed out of the vortices and, hence, they
will not distribute uniformly in the flow, like the inertialess

particles. However, the quantitative description of the
correlations between the locations of particles and of
vortices stayed unaddressed. Note that the distribution of
vorticity in turbulence is random and dynamical, while the
distribution of particles reflects its cumulative effect over
time. There is a residual correlation that we describe by an
integral relation holding in the steady state.
We find the spectrum of fractal dimensions of the attrac-

tor. We show that while the correlation dimension is differ-
ent from the dimension of space, the fractal or similarity
dimension [16] is equal to the space dimension. In contrast,
the information dimension is different from the spatial
dimension and it equals the Kaplan-Yorke dimension. In
turn, the correlation codimension equals twice the Kaplan-
Yorke codimension which constitutes a prediction allowing
direct testing in the laboratory.
The analysis is based on the recent finding of a universal

description for the steady state density of the weakly
compressible dynamical systems [17]. The particles’
motion, though governed by Newton’s law, admits an
effective description in terms of a velocity field in space.
Inertia is described by a small compressible correction to
the incompressible velocity of the background turbulent
flow. This correction leads to a small imbalance of trajec-
tories going in and out of space regions, which accumulates
over a long time to a big effect. Thus, compressibility is a
singular perturbation, which treatment was performed in
[17]. For a mixing incompressible velocity the evolution of
a small volume of particles makes it dense in space. The
volume’s coarse graining over an arbitrarily small scale
covers all the available space, which volume is assumed
finite. When a small compressible component is added to
the velocity, the coarse graining of the evolved volume
over an arbitrarily small scale does not cover the whole
space any longer. However, the coarse graining over a
small but finite scale, that tends to zero with compressibil-
ity, already covers the whole volume.
The analysis assumes the single-particle approximation

where one neglects the interaction between the particles
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and their back reaction on the flow. We consider a small
spherical particle with the radius a and the material density
�p suspended in a fluid with the density � and the kine-

matic viscosity �. The fluid flow uðt; xÞ is assumed to be
incompressible. The Newton law governing the evolution
of the particle’s position qðtÞ and the particle’s velocity vðtÞ
is assumed to have the form

dv

dt
¼ �

d

dt
u½t; qðtÞ� � v� u½t; qðtÞ�

�
; (1)

where � ¼ 3�=ð�þ 2�pÞ and � ¼ a2=ð3��Þ is the Stokes
time. Thus, we assume that all the forces besides the added
mass and the drag can be neglected [2,10]. With no loss, we
set the total volume and the mass equal to one, so the
spatial average of the particles’ density n obeys hni ¼ 1.
We set � ¼ �� 1 so the particle’s velocity relative to the
flow wðtÞ � vðtÞ � u½t; qðtÞ� obeys

dw

dt
¼ �w

�
þ �

d

dt
u½t; qðtÞ�: (2)

The parameter � ¼ 2ð�� �pÞ=ð�þ 2�pÞ changes from

�1 for heavy particles to 2 for light ones. After transients

w ðtÞ ¼ �
Z t

�1
exp

�
� t� t0

�

�
d

dt0
u½t0; qðt0Þ�dt0: (3)

We assume � is much smaller than the smallest time scale
of turbulence, which is the viscous time scale t�, so the

Stokes number St � �=t� � 1 (the Kubo number, mea-

suring velocity correlations in time, is of order one for
turbulence [13]). Then we can substitute the derivative in
the integrand by its value at t0 ¼ t so vðtÞ � uþ�½@tuþ
ðu � rÞu� with � � �� ¼ 2a2ð�� �pÞ=ð9��Þ. Thus at

St � 1 the particle’s velocity is determined uniquely by
its position. One can label trajectories qðt; xÞ by their t ¼ 0
position x and introduce the particle’s flow vðt; xÞ,
@tqðt;xÞ¼v½t;qðt;xÞ�; v�uþ�½@tuþðu �rÞu�: (4)

In the zero inertia limit St ! 0 the particles follow the
incompressible mixing flow of turbulence _q ¼ u½t; qðtÞ�
and in the steady state they are uniformly distributed
in space, so their steady state density ns equals one. This
behavior is characteristic of small dye particles. However,
at a small but finite St, the small correction v-u gives the
particles’ velocity field a finite compressibility [2]

w � r � v ¼ ��� � 0; � ¼ !2 � s2; (5)

so the constant is no longer a solution to the continuity
equation @tnþr � ðnvÞ ¼ 0. Above s2 ¼ sijsij and !

2 ¼
aijaij, where sij is the symmetric (strain) and aij is the

antisymmetric (vorticity) parts of the velocity gradient
@jui ¼ sij þ aij. The field �ðxÞ is positive in the regions

dominated by vorticity and negative in the regions domi-
nated by the strain, and it will be called below the indicator,
indicating whether x is in a vortex. It follows from the

Navier-Stokes equations that� equals the Laplacian of the
turbulent pressure, � ¼ r2p. Equation (5) shows that
heavy particles �< 0 are repelled from vortices (here
and below ‘‘vortex’’ is used qualitatively), while the light
ones �> 0 are attracted. This is the generalization of the
familiar fact that a heavy particle in a centrifuge is pushed
out to the boundary. Turbulence can be considered as a
dynamically changing spatial distribution of vorticity, so
heavy particles tend to accumulate on the boundaries
between the vortices cf. [2,4,11], forming a singular den-
sity supported on these boundaries. This accumulation
however is insignificant during the lifetime of a single
vortex and the ultimate singular distribution of particles
in space ns forms from the long-time combined action of
many uncorrelated vortices. Still one expects a residual
correlation between the distributions of vorticity and par-
ticles, to find which, we consider the steady state density
ns. One expects ns can be obtained by letting an arbitrary
initial condition n0 in the remote past nðt ¼ �TÞ ¼ n0
evolve for infinite time, T ! 1, according to the continu-
ity equation. Starting from the uniform initial distribution
we obtain the steady state density

nsðxÞ ¼ lim
T!1nðTÞ;

nðTÞ ¼ exp

�
�

Z 0

�T
w½t; qðt; xÞ�dt

�
;

(6)

if the different-time correlation function of w with an
arbitrary function f decays at large times [17]. The decay
holds for the mixing turbulence. For the cross correlation
of density and vorticity FðxÞ ¼ h�ð0ÞnsðxÞi we find

FðxÞ¼
�
�ð0;0Þexp

�
�
Z 0

�1
�½t;qðt;xÞ�dt

��

¼@	 ln

�
exp

�
	�ð0;0Þþ�

Z 0

�1
�½t;qðt;xÞ�dt

��
j	¼0;

(7)

where we used the conservation of the mean density
hnðtÞi ¼ const. Applying the cumulant expansion [18],
taking derivative of the series, and setting 	 ¼ 0 we find

FðxÞ ¼ �
Z 0

�1
dthh�ð0; 0Þ�½t; qðt; xÞ�iic þOðSt2Þ: (8)

The above formula is the same as one would obtain by
expanding the exponent in Eq. (7) and keeping the lowest
order term in �, with one important difference. In Eq. (8),
one has the second order cumulant or dispersion that one
would not get by the series expansion of the exponent
cf. [2]. This difference is essential as without the cumulant
the integral in Eq. (8) diverges: hw½t; qðt; xÞ�i ¼ ð1� �Þ�
�h�½t; qðt; xÞ�i is equal to a nonzero sum of Lyapunov
exponents evaluated below. To leading order in St, one
can substitute qðt; xÞ in Eq. (8) by Xðt; xÞ

@tXðt; xÞ ¼ u½t;Xðt; xÞ�;Xð0; xÞ ¼ x; (9)
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where Xðt; xÞ are Lagrangian trajectories of u. One finds

h�ð0ÞnsðxÞi ¼ �
Z 0

�1
dth�ð0; 0Þ�½t;Xðt; xÞ�i; (10)

where we can already omit the cumulant since by incom-
pressibility hw½t;Xðt; xÞ�i ¼ hwðt; xÞi, while Rwðt; xÞdx ¼Rr � vðt; xÞ ¼ 0 by the boundary conditions. Since there
is no degeneracy, the non-negative spectrum of the
Laplacian of pressure in the Lagrangian frame
�½t;Xðt; xÞ� is strictly positive at zero frequency

Eð0Þ ¼
Z 1

�1
h�ð0; 0Þ�½t;Xðt; 0Þ�idt > 0: (11)

The single-point correlation h�nsi �
R
�ðxÞnsðxÞdx

equals �Eð0Þ=2 and it gives the integral of � where each
region is weighted by the number of particles in it

Z
½!2ðxÞ�s2ðxÞ�nsðxÞdx¼a2ð���pÞð9��Þ�1Eð0Þ; (12)

where we used the definitions of � and �. For heavy
particles, �p > �, the answer is negative giving a measure

of the extent to which the particles favor regions with
negative �. For light particles, �p < �, the answer is

positive measuring their favoring of vortices. The above
integral steady state relation holds at any t.

The quantity Eð0Þ appeared first in [4], where it was
shown to determine the correlation dimension of the par-
ticles’ attractor in space. This quantity is increased by the
intermittency of turbulence and it can be estimated as
t�3
� fðReÞ where fðReÞ is a growing function of the

Reynolds number (Re) that grows as a power [4,5]. We
show Eð0Þ determines all the fractal dimensions.

We observe that Eq. (4) is a weakly dissipative dynami-
cal system, defined as the dynamics for which the potential
part of v is much smaller than the solenoidal one. The
statistics of the steady state density of such systems was
shown recently to allow for a complete and universal
description [17]. The application to our case gives the
following results. The motion of particles in space is
chaotic and is characterized by the Lyapunov exponents
[14]. To the lowest order in St, the exponents are equal to
the Lyapunov exponents 
i of the turbulent flow u.
However, the value of the sum of the Lyapunov exponentsP


þ
i that determines the logarithmic rate of growth of the

volumes forward in time,

X

þ
i ðxÞ � lim

t!1t
�1 ln detrjqiðt; xÞ; (13)

is zero for u, so the leading order approximation demands
the account of the correction v-u. This is also the case of
the sum of the Lyapunov exponents

P

�
i of the backward-

in-time flow that determines the density [17]

lim
T!1T

�1 lnn½t¼0;xjnðt¼�TÞ¼n0�¼
X


�
i ðxÞ: (14)

For turbulence
P


�
i is expected to be the same for all x

with the possible exception of a set of points with zero
volume. The results of [17,19] give

X

�
i � � 1

2

Z 1

�1
hwð0; 0Þw½t;Xðt; 0Þ�i ¼ ��2Eð0Þ

2
:

Thus for all initial points, with the possible exception of a
set of points with zero volume, the infinitesimal volumes
decay to zero in the limit of infinite evolution time, while
the steady state density ns is zero except for a set of points
with zero volume. Because of conservation of mass

R
ndx,

we conclude that ns has �-function type singularities on its
support. This support is the strange attractor—the multi-
fractal set in space that is approached by the particles’
trajectories at large times. We now find the Kaplan-Yorke
codimension CKY of the attractor. At weak compressibility
the definition [20] of CKY reduces [17] to CKY ¼ P


þ
i =


þ
3 which gives to the leading order

CKY ¼ �2Eð0Þ
2j
3j ¼ 2a4ð�� �pÞ2Eð0Þ

81�2�2j
3j
; (15)

where the third Lyapunov exponent 
3 determines the rate
of exponential separation of Xðt; xÞ back in time. We have
j
3j 	 t�1

� and CKY 	 �2St2fðReÞ, [4,7]. Despite St2 de-

pendence, CKY is nonsmall at St � 1, [5].
The probability for two particles to be at the distance x is

described by the pair-correlation function hnsð0ÞnsðxÞi.
Substituting the expression from Eq. (6) for ns and using
the cumulant expansion [17] one finds hnsð0ÞnsðxÞi ¼
exp½�2gðxÞ� where the structure function gðxÞ depends
only on the statistics of turbulence

gðxÞ �
Z 0

�1
dt1dt2h�½t1;Xðt1; 0Þ��½t2;Xðt2;xÞ�i: (16)

The above is valid if the higher order terms in the cumulant
expansion are negligible [17]. The Kolmogorov theory
(KT) estimate would give the validity condition St � 1,
while the account of intermittency changes the condition to
hðReÞSt � 1 where hðReÞ is expected to be a slowly
growing function of Re cf. [5]. The function gðxÞ has a
universal behavior [17] at small x that gives

hnsð0ÞnsðxÞi ¼ ð�=xÞ2CKY ; x � �; (17)

where �	 ð�t�Þ1=2 is the Kolmogorov scale of turbulence

[4]. Thus, the correlation codimension equals 2CKY.
Remarkably, the structure function determines all the

correlation functions of ns. Generalization of the calcula-
tion of hnsð0ÞnsðxÞi gives the log-normal statistics [17]
hnsðx1Þnsðx2Þ . . . nsðxNÞi ¼ expð�2

P
i>jg½xi � xj�Þ. The

density ns does not have physical meaning and we consider
the coarse-grained density nl,

mlðxÞ �
Z
jx0�xj<l

nsðx0Þdx0; nlðxÞ � 3mlðxÞ=ð4�l3Þ;
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where mlðxÞ is the mass in a small ball. The limits l ! 0
and St ! 0 do not commute (hn2l i 	 ð�=lÞ2CKY)

lim
l!0

lim
St!0

hn2l i ¼ 1; lim
St!0

lim
l!0

hn2l i ¼ 1: (18)

For any St> 0 the fluctuations of nl are large for a suffi-
ciently small l. On the other hand, by limSt!0hn2l i ¼ 1 one

sees that for any fixed l > 0 the fluctuations of nl are small
for a sufficiently small St. The coarse-grained density is
uniform over scales in which minimal value vanishes with
St. Thus turbulence effect on the particles depends on the
observer’s resolution l: at 2CKY lnð�=lÞ * 1 segregation
holds, while 2CKY lnð�=lÞ � 1—mixing. This is howmix-
ing works effectively for particles on a multifractal.
Segregation may also bring physical effects [4].

At St � 1 there is a scale L � � over which the density
is almost uniform. We note that mlðt ¼ 0; xÞ is equal to the
mass contained in the preimage of the ball time t ago,
which is an ellipsoid around qð�t; xÞ with the largest
axis growing as l exp½j
3tj�. At t
 ¼ j
3j�1 lnðL=lÞ the
ellipsoid has the scale over which the density is uniform,
so the mass contained in it is just its volume
4�l3 exp½�R

0
�t
 wft0; qðt0; xÞ�dt0g=3 and we find

nlðxÞ ¼ exp

�
��

Z 0

�j
3j�1 lnðL=lÞ
�½t0; qðt0; xÞ�dt0

�
; (19)

see [17] for details. The smallness of� brings the expected
conclusion that the statistics of nl is log-normal

hn�l i ¼ ð�=lÞCKY�ð��1Þ; (20)

generalizing the result for the integer moments following
from the log-normality of the correlation functions.
The spectrum of the fractal dimensions Dð	Þ �
liml!0 lnhm	�1

l nsi=½ð	� 1Þ lnl� involves the average

with ns, rather than the spatial average [6,16]. To find it,
consider hn	�1

l nsi ¼ limT!1hexpf�	
R
0
�t
 !½t; qðt; rÞ��

dt� R�t
�T !½t; qðt; rÞ�dtgi. Because of St � 1 the contri-
bution of time-intervals with length t� is negligible and

we may substitute the upper limit in the last integral by
�t
 � t� which allows us to perform independent averag-

ing hexpf�	
R
0
�t
!½t;qðt;rÞ�dt�R�t
�t�

�T !½t;qðt;rÞ�dtgi
�hexpf�	

R
0
�t
!½t;qðt;rÞ�dtgihexpf�R�t
�t�

�T !½t;qðt;rÞ��
dtgi. However the last average is equal to one by the
conservation of mean density, so hn	�1

l nsi ¼ hn	l i and
Dð	Þ ¼ 3� CKY	: (21)

Our results generalize to the two-dimensional case, where
they can be compared with [6]. Working out the small
compressibility limit reproduces our answer. Returning to
the three-dimensional case, we observe that the fractal
dimensions are close to 3 (we do not consider 	 � 1)
The fractal dimension of the attractor Dð0Þ coincides with
the space dimension 3, which is somewhat counter-intuitive

since the volume of the attractor is zero. The information
dimension Dð1Þ is equal to the Kaplan-Yorke dimension.
At St � 1, density inhomogeneities are absent in the

inertial range [15]. Then Eq. (17) is a complete description.
In contrast, at St	 1 the inertial range inhomogeneities are
important [9] and Eq. (16), extended to hold asymptoti-
cally at St	 1, gives a unique access to the inhomogene-
ities. In KT gðxÞ depends only on x and the mean energy

dissipation  so hnsð0ÞnsðxÞi ¼ exp½C�22=3x�4=3�. This
prediction describes correctly the model of v decorrelated
in time [3,7,8]. However, for turbulence, simulations [9]

show lnhnsð0ÞnsðxÞi / x�10=3 at moderate Re where KT is
expected to work. Noting gðxÞ 	 �2x@

4
xh½pðxÞ � pð0Þ�2i,

where �x is the relevant time scale, we suggest the differ-
ence has the same origin as the deviations of the pressure
scaling from KT [21].
A central result is the analytic description of the prefer-

ential concentration by Eq. (12). A single number Eð0Þ
completely characterizes the influence of turbulence on the
log-normal statistics of density at r � �. Log-normality
arises because the steady state density is the cumulative
result of the creation of inhomogeneities by many uncorre-
lated vortices, each of which creates but weak inhomoge-
neity. The fractal structure at scale l forms relatively fast—
within the characteristic time-scale j
3j�1 lnð�=lÞ. The
predictions are testable.
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