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We present a general strategy to simulate a Dþ 1-dimensional quantum system using a D-dimensional

one. We analyze in detail a feasible implementation of our scheme using optical lattice technology. The

simplest nontrivial realization of a fourth dimension corresponds to the creation of a bi-volume geometry.

We also propose single- and many-particle experimental signatures to detect the effects of the extra

dimension.
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Introduction.—There is long-standing interest in physics
for the possible existence and effects of extra dimensions.
This interest was prompted by the seminal papers by
Kaluza and Klein [1] aimed at unifying interactions using
the presence of a fourth spacial dimension. Separately,
enormous progress has been made in recent years to
achieve real quantum simulations, that is, to simulate
quantum mechanical models using other well -controlled
quantum systems [2]. It is now reasonable to investigate to
what extent present technology can be used to faithfully
simulate a quantum theory living in extra dimensions.

Let us briefly recall recent progress on quantum simu-
lation of condensed matter models using cold atoms [3,4].
By confining atoms to an optical lattice, the Hubbard
model may be realized [5], and the superfluid-to-Mott-
insulator transition observed [6]. Furthermore, several
schemes to couple neutral cold atoms to artificial Abelian
[7] and non-Abelian [8,9] magnetic and electric fields
have been put forth [10–13]. This opens the door to creat-
ing strongly correlated quantum-Hall states with cold
atoms [14]. Although cold atoms are nonrelativistic, it is
possible to simulate relativistic effects by looking at the
low-energy behavior of some special lattice models—
lattice models where the band structure presents Dirac
cones, e.g., honeycomb lattices [15,16] or lattices dressed
with internal degrees of freedom [17]. Hence, it is not
far-fetched that cold atoms may provide some insight
into particle physics models that are not completely
understood, such as quantum chromodynamics (see for
instance [18]) or, as presented here, in the analysis of extra
dimensions.

General strategy.—The basic idea to achieve a quantum
simulation of an extra dimension on a lattice is to encode it
in another degree of freedom. The connectivity of the real
3D lattice and the extra degree of freedom must be such
that the effective Hamiltonian is analogous to a 4D
Hamiltonian (for an alternative approach, cf. [19]).

Let us illustrate this construction in the case of the
simplest quantum mechanical model of a free particle on

a hypercubic Dþ 1 spacial lattice. The Hamiltonian for
this system is

H ¼ �J
X
q

XDþ1

j¼1

ayqþuj
aq þ H:c:; (1)

where aq destroys a degree of freedom at site q, and the uj

stand for Dþ 1 cartesian versors that set the actual con-
nectivity of the lattice. Now, we write the Dþ 1-position
index q as the combination of a D-dimensional position r
and a separate index � in the extra dimension. That is, the
Dþ 1-space is decomposed in hypersurfaces, that we shall
call layers, labeled by the � index, q ¼ ðr; �Þ, and the
Hamiltonian becomes

H ¼ �J
X
r;�

�XD
j¼1

að�Þyrþuj
að�Þr þ að�þ1Þy

r að�Þr

�
þ H:c:: (2)

The operator að�Þ can be reinterpreted as a Fock operator
for the species �. The total number of species N, � ¼
1; . . . ; N, corresponds to the number of lattice layers in the
extra-dimension. The crucial requirement to simulate a
Dþ 1-dimensional model with a set of N species in a
D-dimensional lattice is that each internal state be coupled
to only two other states in a sequential way.
We here propose two ways of realizing the Hamiltonian

of Eq. (2). Both methods make use of Raman transitions in
optical lattices but differ in the way of constructing internal
degrees of freedom. We shall refer to the two methods as
(i) state-dependent lattice and (ii) on-site dressed lattice.
State-dependent lattice.—Let us now discuss the real-

ization of our model in an extra dimension using spin-
dependent lattices [20] (alternative state-dependent lattices
could be obtained by trapping long-lived optical states
via superlattice techniques [16,21]). The simplest nontri-
vial step to construct an extra dimension corresponds to
a bi-volume geometry, that is, the quantum system
spans over N ¼ 2, D ¼ 3, layers connected through an
extra dimension. We shall keep this example in mind,
while providing expressions for N generic layers in D
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dimensions. Recently, a scheme to reduce the heating due
to spontaneous emission in state-dependent lattices –a
major expermiental challenge—was proposed [22]. This
would allow going beyond the N ¼ 2 case.

Let us stress that although we will deal with the single-
particle part of the Hamiltonian, single-site interaction
terms may be added to the model without making the
scheme less feasible experimentally, thus allowing for the
simulation of interacting 4D quantum field theories.

It is possible to induce a relative phase in the periodic
optical potential seen by hyperfine states with different
total angular momentum F, by tuning the angle between
the linear polarizations of counterpropagating lasers that
form the lattice. Hence, the respective minima seen by the
atoms get separated by the same phase shift. For the
explicit example of 87Rb loaded in a 3D lattice, the two
available values of F, F ¼ 1 and F ¼ 2, become two
different species, which correspond to the two layers of a
bi-volume. In general, if we have N different minima and
the atomic states are long-lived, the system will consist of
N copies of 3D layers.

At this stage, there is no hopping between different
layers. The additional ingredient required to map un-
coupled 3D hopping Hamiltonians to a single 4D
Hamiltonian is a coupling between different minima or
layers. The main difficulty is to ensure that each lattice
site have the appropriate number of nearest-neighbors. In a
regular optical lattice this is always the case as Wannier
functions –single-particle functions living on each lattice
site—at different positions are orthogonal. To analyze this
requirement, let us order arbitrarily the hyperfine states and
label them with the index � ¼ 1; . . . ; N. We now consider
a Lambda configuration between the state � and the state
�þ 1 which induces a Raman transfer between the two
species, and hence an assisted hopping term between the
two sublattices. The effect of the laser is shown in Fig. 1 for
D ¼ 3, where for simplicity only one cubic cell of the two
sublattices is pictured and the spectator species are omit-
ted. The two sublattices are separated by a displacement
vector d, defined as the smallest distance between a pair of
vertices of the two cubes. Black and red links represent free
hopping terms within the sublattices while green links
correspond to Raman transitions. In order to make the
picture readable only the stimulated hoppings relative to
only one site in the �þ 1 sublattice are displayed. For
each of the possible hopping terms, the Raman hopping
rate is computed as the overlap integral

JðjÞ��þ1 ¼
���þ1

2

Z
dDrw�ðr� lÞwðr� dÞ; j; (3)

where the lj, j ¼ 1; . . . ; 2D, are the positions of the blue
vertices measured with respect to the front-left-down one,
l ¼ 01, and wðrÞ is the Wannier function centered at r,
which for a hypercubic lattice is the product of the one-
dimensional Wannier functions for each Cartesian direc-

tion. In a more complicated scenario using a superlattice
the Wannier functions for the two species may be different.
Wannier functions are localized and decay exponentially

fast away from each lattice site. A hierarchy between the

hopping rate Jð1Þ��þ1 and the JðjÞ��þ1, j > 2, can be easily
generated, already for not so small value of jdj=a, with a
the lattice spacing. The behavior of the suppression
depends on the depth of the optical potential V, and in-
creases with V. By using the separability of the Wannier
functions, the maximal ratio between the unwanted links
and the first link can be computed as 1d problem

R � maxfJðjÞ��þ1; j > 2g
Jð1Þ��þ1

¼
R
dxw�ðxÞwðxþ a� dxÞR
dxw�ðxÞwðx� dxÞ ;

(4)

where dx is the largest Cartesian component of displace-
ment d. The optimal scenario at fixed jdj is for d along the

diagonal of the hypercube, i.e. dx ¼ jdjffiffiffi
D

p . The ratio R is

plotted in log scale for typical values of V about 10 times

the recoil energy, ER � ð�@Þ2
ð2ma2Þ , in Fig. 2. The suppression is

very efficient: for V ¼ 20ER and dx ¼ a
5 the other hoppings

are less 1% of Jð1Þ��þ1. Under this condition, the effective
Hamiltonian is

FIG. 1 (color online). A bi-volume geometry is made out of
two three-dimensional sublattices separated by a displacement
vector d. Lattice sites in different colors trap different internal
states. Black and red links connect nearest neighbors of 3D
sublattices, respectively, and represent the free hopping terms
in each sublattice. These tunnelings are due to kinetic energy and
do not involve transitions between internal states. Green links
connect nearest neighbor sites from different sublattices and are
induced by laser assisted Raman transitions. The strength of this
coupling depends very strongly on the distance between the pairs
of sites.
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H ¼ �X
r;�

�XD
j¼1

Jað�Þyrþuj
að�Þr þ J0að�þ1Þy

r að�Þr

�
þ H:c:; (5)

where for simplicity we assume a uniform hopping be-

tween species J0 ¼ Jð1Þ��þ1, 8�. The above Hamiltonian

coincides with the one of Eq. (2), and hence is equivalent to
the free hopping Hamiltonian Eq. (1) inDþ 1 dimensions.

A few considerations are in order. First, we may choose
periodic or open boundary conditions for the hopping term
in the extra-dimension, by either including or not a Raman
stimulated transfer between the N and 1 states. In the
former, our model is equivalent to Dþ 1-model compac-
tified on a circle (cf. [1,23,24]). Furthermore, as nonzero
constant or r-dependent phase can be chosen for the hop-
ping rate J0, the above setup allows the simulation of
compatifications in presence of nontrivial background
magnetic fluxes piercing the circle. Second, if the inter-

actions are negligible and open boundary conditions are
chosen, the only limitation to the ‘‘thickness’’ of the extra-
dimension is due to the number of hyperfine states avail-
able, and to the technical difficulty of coupling them
selectively. Indeed, for any value of potential V we can
find a displacement d sufficiently small such that R � 1
and Eq. (5) holds.
Once quartic interactions due to binary scattering of

atoms are included, the nonzero overlap of the Wanniers
of different D-dimensional sublattices potentially induces
nearest neighbors interactions in the Dþ 1-dimension.
Again, the separability of the hypercubic lattice allows us
to express the ratio between the nearest neighbors and
on-site interactions as

ðRUÞ��þ1 � ���þ1

���

YD
j¼1

R
dxjjwðxjÞwðxj � djÞj2R

dxjjwðxjÞj4
; (6)

where dj, j ¼ 1; . . . ; D, are the Cartesian components of

the displacement d, and ���þ1 and ��� are the scattering
lengths of �-�þ 1, and �-� collisions, respectively. In
most cases, ���þ1 � ���, hence ðRUÞ��þ1 ¼ RU. In the
Table I the ratio RU for a displacement along the diagonal
of the hypercube, dx ¼ dj, 8dj, is given for different

values of V. As expected, RU is monotonically decreasing
function of both dx and V. By comparison of the numerical
result of Table I with the plot 2, it turns out that nearest
neighbors interactions cannot be disregarded for small
value of the optical potential (V ¼ 5ER) while the required
hierarchy for both hopping and interaction couplings is
realized for a range of displacements dx at larger values
of V. In fact, a nontrivial RU may lead to interesting new
phenomena like supersolidity [25].
On-site dressed lattice.—In another way to realize of

Eq. (2), the internal atomic degrees of freedom can be
obtained considering hyperfine states with same total
angular momentum F and different third component mF.
In our case, we are interested in atoms with sufficiently
large values of F, in order to have several layers in the extra
dimension. Very recently, earth-alkali atoms with such
property have attracted a lot of attention from a theoretical

FIG. 2 (color online). Behavior in log scale of the hopping
hierarchy under changing of the maximal Cartesian component
dx of the displacement d for different values of the lattice
potential V. From top to bottom, the curves correspond are to
V ¼ 5, 10, 15, and 20ER. The dash horizontal lines give the
suppression by a factor 10 and 100 of the next-to-leading order
coupling. Small values of R allow for the proper bi-volume
connectivity of the system.

TABLE I. The ratio RU between the interlayer and the on-site interaction terms for D ¼ 3, as a function of the optical potential V
and of the x-component of the displacement dx ¼ jdj= ffiffiffi

3
p

. As confirmed by the numerical results, RU is monotonically decreasing
function of V and dx. Only for V ¼ 5ER, RU is never below 1=10 in the range of dx compatible with a bi-volume hopping term, see
Fig. 2. The inequality RU < 1=10 for dx=

ffiffiffi
3

p � a=4 and V around 10ER and higher, ensures that a four three-dimensional layer with
negligible interlayer interaction can be consistently achieved for such values of the potential. For V greater that 20ER a five three-
dimensional layer is possible.

dx 5 Er 10 Er 15 Er 20 Er 40 Er

0.05 a 0.936 25 0.903 827 0.879 944 0.860 432 0.803 103

0.1 a 0.768 873 0.667 91 0.600 15 0.548 733 0.416 638

0.15 a 0.554 949 0.404 605 0.318 226 0.260 268 0.140 275

0.2 a 0.353 203 0.2018 0.131 853 0.092 336 5 0.030 888 1

0.25 a 0.199 15 0.083 378 1 0.042 994 5 0.024 699 6 0.004 496 57
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[26,27] and an experimental point of view [28–30]. As in
the ground state they have total orbital momentum J ¼ 0,
and the nuclear spin I practically does not couple to the
dynamics, it follows that F ¼ I, and their interaction are
SUðNÞ invariant with N up to 10 for 87Sr. Such atoms are
fermions. Smaller symmetry groups can be achieved also
for alkali atoms [31]. The mixing interaction between
species can be realized by optical means as in [32]. It is
worth noticing that there is no additional difficulty in
(i) realizing periodic boundary conditions by identifying
the species N þ 1 and 1, as this amounts to coupling
species 1 and N as well, and (ii) engineering hoppings
with nontrivial phases equivalent to magnetic fluxes pierc-
ing the compactified circle. If two-body interactions be-
tween species are present, the corresponding extended
Hubbard model has a very rich phase diagram that is at
present under study [33]. Such scenarios are technically
very challenging and involved but potentially feasible us-
ing state of the art techniques.

Single-particle observables.—We now turn to discuss
observables that can reveal the properties of an extra
dimension, whatever experimental technique is used
to implement it. The most direct way is to consider
single-particle effects. The effective dimensionality of a
system is revealed by the scaling behavior of observables.
For instance, the two-point correlator free bosonic relativ-
istic field theory in D spacial dimensions, decays as

e�mjxj=jxjðD�1Þ, where jxj is a space-time distance, m is
the mass of the field. Such dimensionality dependence
can be interpreted as the effect of monogamy of entangle-
ment [34]. The more neighbors exist, the more distributed
the correlations must be. In this simple framework, the
effect of an extra dimension which can be adiabatically
coupled in the system must translate into an interpolation
between the decay exponents in the propagator. This is
managed by a tower of the so-called Kaluza-Klein modes
that bring a series of massive states into the spectrum. We
show here that the local density of states, �ðEÞ, routinely
measured in cold atoms experiments [3,4], displays an
analogue behavior once computed for our optical lattice
scheme.

To compute �ðEÞ, we consider the Fourier transform
of the free Hamiltonian Eq. (2) with periodic boundary
conditions

H ¼ � XN
�;�0¼1

Z dDk

ð2�ÞD
�
2J

XD
j¼1

cosðkjÞ��;�0

þ J0C��0
�
ayð�Þk að�

0Þ
k ;

where C��0 ¼ ��;ð�0þ1Þ þ ��;ð�0�1Þ (the N þ 1 layer is
identified with the first one due to the periodic boundary
conditions) is the matrix that generates the cyclic group
ZN . This Hamiltonian can be diagonalized in the space of

layers, H ¼ P
�¼1;N

R
dDk
ð2�ÞD E

D;Nðk; �Þayð�Þk að�Þk with

ED;Nðk; �Þ ¼ �2J
X

j¼1;D

coskj � 2J0 cos
�
2�ð�� 1Þ

N

�
;

where the tower of Kaluza-Klein modes modify the
dispersion relation introducing terms proportional to the
coupling between layers J0. It follows that the density of
states is

�D;NðEÞ ¼ 1

N

X
�¼1;N

Z dDk

ð2�ÞD �ðE� ED;N
k ; �Þ:

First, we observe that for N � 1, the sum can be approxi-
mated by the integral over kDþ1 � 2�ð�� 1Þ=N, and
�D;NðEÞ ! �Dþ1;1ðEÞ. Second, �D;NðEÞ can be computed

analytically in the low-energy limit, E� Emin ¼
�2ðDJ þ J0Þ, for J ¼ J0, or for J0 � J, by taking the
continuous limits coskj ! ð1� 1

2 k
2
j Þ, j ¼ 1; . . . ; Dþ 1,

or j ¼ 1; . . . ; D, respectively. In the latter case, the density
of states for N ¼ 2, in terms of the one of two uncoupled

layers, i.e., �D;N¼1 / 1
J ðE�Emin

J ÞD=2�1, is

�D;N¼2 � 1

2
�D;1

��
1þ J0

E� Emin

�ðD=2Þ�1

þ
�
1� J0

E� Emin

�ðD=2Þ�1
�

¼ �D;1

�
1þ ðD2 � 1ÞðD2 � 2Þ

2

�
J0

E� Emin

�
2 þ . . .

��
:

In particular, the above expression provides an interesting
experimental signature for a bi-volume, D ¼ 3.
A many body observable: MI-SF transition.—In the

presence of interactions, the effective dimensionality of
the system can be experimentally detected by measuring
the location of the Mott-insulator-to-superfluid phase tran-
sition. For simplicity, we focus on the bosonic case. It is
well known that the ground state of Bose-Hubbard
Hamiltonian in any dimensions presents two phases: for
J=U � ðJ=UÞc, the ground state is a Mott-insulator with
definite local occupation. For J=U � ðJ=UÞc the ground
state is a superfluid state with all the atoms condensed
in the single-particle state with null pseudomomentum.
The two phases, Mott-insulator and superfluid, are charac-
terized by the local order parameter haqi. As the Mott-

insulator ground-state has a well-defined local occupation
we have haqi ¼ 0 everywhere, i.e., no atom number

fluctuations. For the superfluid state haqi � 0, as the occu-

pation is local in momentum and not in position. The
critical point ðJ=UÞc separates the phases with zero and
nonzero order parameter, or equivalently, where the sym-
metry aq ! ei�aq is broken and where it is not. This

critical point ðJ=UÞc depends on the dimensionality of
the lattice.
To be more precise, the effective Hamiltonian of a

multistate optical lattice in D spatial dimensions corre-
sponds to
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H ¼ �X
r;�

�XD
j¼1

Jað�Þyrþuj
að�Þr þ J0að�þ1Þy

r að�Þr Þ þ H:c:

þX
r;�

U

2
n̂ð�Þr ððn̂ð�Þr � 1Þ þ RUðn̂ð�þ1Þ

r � 1Þ � 2 ~�Þ;

(7)

where U ¼ 4�@2�
m

R
dDrjwðrÞj4, n̂ð�Þr ¼ að�Þyr að�Þr is the

number operator, and ~� ¼ �
U is the chemical potential

measured in units of U. If RU � 1 the above
Hamiltonian is the Bose-Hubbard Hamiltonian in Dþ 1
dimensions. The value of RU is controlled by the depth of
the optical potential V, and the inequality is always sat-
isfied for large enough V. Thus, we can appropriately tune
the scattering length � such that MI-SF occurs for a very
large value of V.

In Fig. 3 we plot the order parameter computed using a
Gutzwiller ansatz as a function of J=U for a lattice made of
two D ¼ 3 layers. Different curves correspond to different
values of the coupling between layers, J0. As J0 ! 2J,
which corresponds to J0 ! J in the case of periodic bound-
ary condition, the critical value approaches the known
value for four dimensions, in mean-field theory. The inset
shows the theoretical prediction of the shift in ðJ=UÞc as
the coupling between the two layers increases.

Within the mean-field approximation, the value of
ðJ=UÞc can be computed analytically extending the second
order perturbative approach of [35,36] to the Hamiltonian
in Eq. (7) for N layers periodically identified and RU ¼ 0.
Indeed, due to the periodic boundary conditions in
the compact extra-dimension—the lattice is assumed to
be sufficiently extended in the other D dimensions such
that boundary conditions do not matter—the order parame-

ter is constant (and it can be taken real) on the lattice c �
hað�Þr i, 8r; �. The critical value is found when the sym-
metric phase c ¼ 0 becomes unstable, i.e., when the
@2EðJ=U;J0=U; ~�Þ

@c 2 ¼ 0. Such quantity can be computed exactly,

within the mean-field approximation, by treating the hop-
ping term as a perturbation at second order. The result is

� �Uc ¼ 2 �nþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 �nþ 1Þ2 � 1

q
; (8)

where � ¼ D=ðDþ J0=JÞ, �Uc ¼ U=ð2DJÞ is the critical
value made independent of the connectivity of the hyper-
cubic lattice, and �n is the occupation of the Mott state in
each species. For J0 ¼ 0, it reduces to the known expres-
sion. Let us stress that Eq. (7) is not affected by the number
of species, N. In fact, for J0 ¼ J it follows that ðJ=UÞc for
D-dimensional model with N layers coincides with critical
value for the Dþ 1 Bose Hubbard model. This the case
because in the mean-field approximation only local prop-
erties like the number of neighbors count, and nothing can
be said about global properties like topology and size of
one space-time direction. Although this prediction cannot
be exact—m-point correlation functions for m � N cer-

tainly distinguish whether a space-time direction is com-
pactified on a circle or not—we expect that the mean-field
result is qualitatively correct, and that a small number 3D
layers are sufficient to reproduce the 4D critical behavior.
Conclusions.—We have presented a strategy to produce

a quantum simulation of an extra dimension. The recipes
we have proposed to engineer 4D models pave the way to
the study of novel phases, not accessible in 3D condensed
matter world. Furthermore, together with the capacity to
simulate the propagation of pseudoparticles in nontrivial
gauge fields and in a gravitational background [37], the
present proposal is a step to a complete tool box for
simulating quantum field theory scenarios, in and beyond
the standard model of particle physics.
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