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Monotonic renormalization group flows of the ‘‘c’’ and ‘‘a’’ functions are often cited as reasons why

cyclic or chaotic coupling trajectories cannot occur. It is argued here, based on simple examples, that this

is not necessarily true. Simultaneous monotonic and cyclic flows can be compatible if the flow function is

multivalued in the couplings.
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Exact general results for renormalization group (RG)
flows are important as they may provide physical insight
for strongly coupled systems. The c theorem for 2D sys-
tems [1] and the a theorem for 4D systems [2,3] are two
such results that have been established for very broad
classes of models [4].

The c theorem shows the existence of a monotonically
decreasing function of the length scale cðLÞ, which inter-
polates between 2D Virasoro central charges of theories at
conformal fixed points, and thereby provides an intuitively
correct count of system degrees of freedom—fewer in the
infrared (IR) than in the ultraviolet (UV). The a theorem
establishes similar monotonic flow for the induced coeffi-
cient of the Euler density aðLÞ for a 4D theory in a curved
spacetime background.

It is a common conclusion—a ‘‘folk theorem’’—based
on these monotonically evolving ‘‘observables’’ that the
underlying couplings cannot have RG trajectories which
are limit cycles or undergo other, perhaps more exotic (e.g.,
chaotic), oscillations (e.g., see second bullet item under
Sec. 6 in [5]). The point of this Letter is to explain and
illustrate as simply as possible, with just one coupling, why
this conclusion may be unwarranted. (Somewhat similar
criticism of the monotonic folklore has been proffered in
other contexts, involving degenerate Morse function coun-
terexamples for models with vorticity in the flow of several
couplings [6].)

In principle, we believe cyclic or perhaps even chaotic
coupling trajectories are not ruled out by either the c or a
theorems, nor are they necessarily excluded by other
monotonic ‘‘potential flow functions.’’ To illustrate our
reasoning, we begin with a very simple example based
on a mechanical analogy. While this example does indeed
exhibit both monotonic flow and a cycling trajectory, it has
the peculiar feature—insofar as intuitively counting de-
grees of freedom is concerned—that the monotonic flow
is unbounded both above and below. Nevertheless, we
recall there is a field theory model that produces just
such behavior [7]. We then exhibit another example where
the monotonic flow is bounded below and the coupling
trajectory is not only cyclic but, in fact, chaotic.

The essential ideas, expressed for a single coupling xðtÞ,
where t ¼ lnL, are given by general statements for a
locally gradient RG flow,

dxðtÞ
dt

¼ �ðxðtÞÞ ¼ � dCðxðtÞÞ
dxðtÞ ; (1)

dCðxðtÞÞ
dt

¼ dx

dt

dC

dx
¼ �
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dx
¼ �

�
dC
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�
2
; (2)

and by a specific example of a flow function, namely,

C0ðxÞ ¼ ��

4
� 1

2
arcsinðxÞ � 1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
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The corresponding � function is

�0ðxÞ ¼ � d

dx
C0ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: (4)

The RG flow is given by

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; (5)

which is easily recognized as a ‘‘right-moving’’ simple
harmonic oscillator (SHO) started from rest at x ¼ �1.
This of course has a turning point, x ¼ þ1, reached in
finite �t, at which point the only way to continue the
evolution is to change branches of the square root,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
! �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, to produce a ‘‘left-moving’’ SHO.

When this procedure is repeated as turning points are
encountered, the cyclic evolution emerges.
In addition, when the first turning point is encountered C

switches to a second branch, given by

C1ðxÞ ¼ � 3�

4
þ 1

2
arcsinðxÞ þ 1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: (6)

This gives the expected switch between branches for the �
function,

dx

dt
¼ � d

dx
C1ðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: (7)

More importantly, this C function continues to decrease
monotonically as a function of t after switching branches.
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This is easily understood for this simple example just
because the monotonically changing C is nothing but the
negative of the definite integral of ‘‘the oscillator’s kinetic
energy’’ T ¼ ðdx=dtÞ2,

C ¼ �
Z

�dx ¼ �
Z xðtÞ

xð0Þ¼�1

dx

dt
dx ¼ �

Z t

0
Tdt; (8)

where the integral is taken along the actual trajectory of the
oscillator—a path that conserves total ‘‘energy,’’ cf. RG
invariants. (That is to say, C is just the reduced or abbre-
viated action of Euler, Maupertuis, and Lagrange, or per-
haps more consistently with the notation, it is the
characteristic function of Hamilton.)

In fact, to obtain the correct evolution for the continuous
flow in question, it is absolutely necessary not only to

switch between the two branches for �ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
,

but also to switch among an infinite set of branches for the
C function, as successive turning points are encountered.
Thus, as an analytic function, C involves a nontrivial
Riemann sheet structure [8]. With initial flow to the right,
dx=dtjt¼0 > 0, after N encounters with turning points, the
evolution is given by

dx

dt
¼ ð�ÞN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ � d

dx
CNðxÞ; (9)
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�
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2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p �
; (10)

where arcsin is the principal branch of the inverse sine
function. We plot a few branches of C in Fig. 1. More
directly, as a function of t,

CðtÞ ¼ � 1

2
ðt� cost sintÞ; (11)

which is indeed monotonic in t, as shown in Fig. 2.
The SHO example of simultaneous monotonic and cy-

clic flows, while certainly familiar, is perhaps disconcert-
ing, not just because of the multivaluedness of CðxÞ, but
also because CðtÞ is unbounded both above and below.

However, this same cyclic flow may also be observed by
selecting different coordinates for the coupling, without
changing the physics of the system. Indeed, the ‘‘Russian
doll superconductivity model’’ of LeClair et al. [7,9] pro-
vides a single flowing coupling u that illustrates what we
have in mind. For that field theoretic model the RG �
and corresponding C function are given by innocuous
polynomials,

du

dt
¼ 1

2
ð1þ u2Þ; C ¼ � 1

2
u

�
1þ 1

3
u2
�
: (12)

This same RG flow was also found earlier, in a different
context, by Glazek and Wilson [10]. While this is uncom-
plicated local behavior, the global trajectories go through
infinite excursions in the course of their cyclic evolution:

uðtÞ ¼ tan

�
1

2
tþ arctanuð0Þ

�
: (13)

Thus it is difficult to keep track of the monotonicity of C, if
any, as it executes an infinite jump during the course of
each cycle.
The system is perhaps easier to grasp upon being ex-

pressed in terms of a ‘‘dual’’ coupling, x,

u ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

1� x

s
;

dx

dt
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
: (14)

That is to say, the RG flow of the model is equivalent to the
SHO as described earlier. Note the cyclic switching be-
tween the branches of uðxÞ corresponding to right-moving
and left-moving SHO motion, including an infinite jump
upon reaching x ¼ 1, as shown in Fig. 3.
Similar analysis can be carried out for theories with

several couplings. (For a mechanical analogy correspond-
ing to two couplings, i.e., a 2D configuration space, con-
sider trajectories on the plane as determined by a
rotationally invariant potential. Such trajectories are again
given by gradient flow and in such cases the radial motion
is governed by a multibranched flow function.) For field
theory models with several couplings and limit cycles in
4� " spacetime dimensions, see [11,12]. We leave the
study of these for another venue, but we emphasize here
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FIG. 1 (color online). Four branches of the SHO CðxÞ function.

0 5 10

-6

-4

-2

0

t

C(t)

FIG. 2 (color online). Monotonic flow for the SHO CðtÞ.
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that limit cycles are already known to be physically rele-
vant (see the discussion of many-body and cold matter
systems reviewed in [9]). Whether limit cycles are to be
found only in very peculiar cases or are to be widely
encountered in many situations remains to be seen [10].

To complete this brief discussion, we consider a model
with a cyclic but chaotic trajectory which also exhibits a
monotonic flow function. Again, a solvable example in-
volving a single coupling is sufficient to make the point.

Perhaps the simplest system with chaotic RG evolution
is the Ising model with imaginary magnetic field, described
by the special case of the logistic map with parameter 4
[13,14]. The exact trajectory and � function are given by

xðtÞ ¼ ð sinð2�t arcsin
ffiffiffi
x

p ÞÞ2; (15)

dxðtÞ
dt

¼ �ðln4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ½1� xðtÞ�p

arcsin
ffiffiffiffiffiffiffiffi
xðtÞp

; (16)

where the arcsin function in this last expression switches
branches upon encountering turning points. Similarly, the
corresponding C function, considered as a function of xðtÞ,
also changes branches at turning points.

The direction of the flow in t is such that the origin is an
attractive fixed point in the infrared, so x ! 0 as
L ðand t ¼ lnLÞ ! 1. On the other hand, x becomes cha-
otic, exhibiting cycles of arbitrary length, as L ! 0 and
t ! �1. That is to say, for any initial x 2 ð0; 1� the flow
for t > 0 is monotonically toward the fixed point at x ¼ 0,
while for t < 0 the flow is toward a turning point at x ¼ 1,
where dx=dt reverses and the flow is toward a second
turning point at x ¼ 0—the zero of � at x ¼ 0 is a fixed
point only for the first branch of �. As the evolution
continues into the UV, with t < 0, the trajectory oscillates
between the pair of turning points, x ¼ 0 and x ¼ 1, with
increasing average ‘‘speed.’’

There are an infinite number of branches for both �ðxÞ
and CðxÞ in this case. Those branches are given by

�NðxÞ ¼ �ðln4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp �

ð�ÞN
�
1þ N

2

�
�þ arcsin

ffiffiffi
x

p 	
;

CNðxÞ ¼ 1

8
ðln4Þ

�
4x2ðx� 1Þ2 þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
ð1� 2xÞ

� ð�ÞN
�
1þ N

2

�
�� arcsin

ffiffiffi
x

p �
2
	
: (17)

Here arcsin is understood to be the principal branch, b� � �c
is the floor function, and N counts the number of encoun-
ters with the trajectory turning points at x ¼ 1 and x ¼ 0.
The first three branches of CðxÞ are shown in Fig. 4. As t !
1, the flow is toward the origin, with xðþ1Þ ¼ 0 and
Cðþ1Þ ¼ 0, while as t ! �1, C ! þ1. This is more
clearly seen by plotting

CðtÞ ¼ �
Z xðtÞ

0
�ðxÞdx ¼

Z 1

t
½�ðxðtÞÞ�2dt; (18)

for 0< xðtÞjt¼0 < 1. The flow of C is monotonic in t and
bounded below, C � 0. This is shown in Fig. 5 for
xðtÞjt¼0 ¼ 1=2.
A full discussion of Lagrangian models that realize this

second example will have to be given elsewhere. Suffice it
to say here that chaotic RG trajectories have indeed ap-
peared in spin-glass systems [15,16]. The point we wish to
emphasize is that such behavior is not necessarily incon-
sistent with c and a theorems.
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FIG. 4 (color online). Three branches of the logistic CðxÞ
function.
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FIG. 3 (color online). The Russian doll–SHO RG duality.
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FIG. 5 (color online). Monotonic flow for the logistic CðtÞ.
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In conclusion, we have argued against the folklore that
cyclic RG trajectories are always incompatible with gra-
dient flow due to a monotonic potential flow function. We
have given examples for which monotonic evolution of
CðtÞ is consistent with cyclic coupling trajectories when
the flow function C is multivalued in the couplings.
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