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Quantum algorithms could be much faster than classical ones in solving the factoring problem.

Adiabatic quantum computation for this is an alternative approach other than Shor’s algorithm. Here

we report an improved adiabatic factoring algorithm and its experimental realization to factor the number

143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the

largest number factored in quantum-computation realizations, which shows the practical importance of

adiabatic quantum algorithms.
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Multiplying two integers is often easy while its inverse
operation—decomposing an integer into a product of two
unknown factors—is hard. In fact, no effective methods in
classical computers is available now to factor a large
number which is a product of two prime integers [1].
Based on this lack of factoring ability, cryptographic tech-
niques such as RSA have ensured the safety of secure
communications [2]. However, Shor proposed his famous
factoring algorithm [3] in 1994 which could factor a larger
number in polynomial time with the size of the number on
a quantum computer. Early experimental progresses have
been done to demonstrate the core process of Shor’s algo-
rithm on liquid-state NMR [4] and photonic systems [5,6]
for the simplest case—the factoring of number 15.

While traditional quantum algorithms including Shor’s
algorithm are represented in circuit model, i.e., computa-
tion performed by a sequence of discrete operations, a new
kind of quantum computation based on the adiabatic theory
was proposed by Farhi et al. [7] where the system was
driven by a continuously-varying Hamiltonian. Unlike
circuit-based quantum algorithms, adiabatic quantum
computation (AQC) is designed for a large class of opti-
mization problems—problems to find the best one among
all possible assignments. Moreover, AQC shows a better
robustness against error caused by dephasing, environmen-
tal noise and imperfection of unitary operations [8,9]. Thus
it has grown up rapidly as an attractive field of quantum-
computation research.

Several computational hard problems have been formu-
lated as optimization problems and solved in the archi-
tecture of AQC, for example, the three-satisfiabilty prob-
lem, Deutsch’s problem, and quantum database search
[7,10–15]. Recently Peng et al. [16] have adopted a simple
scheme to solve the factoring problem in AQC and imple-
mented it on a liquid-state NMR system to factor the
number 21. However, this scheme could be very hard for
large applications due to the exponentially-growing spec-
trum width of the problem Hamiltonian. At the same time,

another adiabatic factoring scheme provided by Schaller
and Schützhold [17] could suppress the spectrum width
and shows to be much faster than classical factoring algo-
rithms or even an exponential speed-up.
However, Schaller and Schützhold’s original factoring

scheme is too hard to be implemented for any nontrival
factoring cases on current quantum processors. In this
Letter, we improve the original scheme to use less resour-
ces by simplifying the equations mathematically. And a
factoring case of 143 is chosen as an example to be
resolved in this scheme and finally experimentally imple-
mented on a liquid-crystal NMR system with dipolar
couplings. We believe this to be the largest number
factored on quantum-computation realizations.
As mentioned before, AQC was originally proposed to

solve the optimization problem. Because the solution space
of an optimization problem grows exponentially with the
size of problem, to find the best one is very hard for
the classical computers when the problem’s size is large.
In the framework of AQC, a quantum system is prepared in
the ground state of initial Hamiltonian H0, while the pos-
sible solutions of the problem is encoded to the eignestates
state of problem Hamiltonian Hp and the best solution to

its ground state. For the computation, the time-dependent
Hamiltonian varies from H0 to Hp, and if this process

performs slowly enough, the quantum adiabatic theorem
will ensure the system stays in its instantaneous ground
state. So in the end, the system will be in the ground state of
Hp which denotes the best solution of the problem. Simply

the time-dependent Hamiltonian is realized by an inter-
polation scheme

HðtÞ ¼ ½1� sðtÞ�H0 þ sðtÞHP; (1)

where the function sðtÞ varies from 0 to 1 to parametrize the
interpolation. The solution of the optimization problem
could be determined by an measurement of the system
after the computation.
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Here, the factoring problem is expressed as a formula
N ¼ p� q, where N is the known product while p and q
are the prime factors to be found. The key part of adiabatic
factoring algorithm is to convert the factoring problem to
an optimization problem, and solve it under the AQC
architecture. The most straightforward scheme is to repre-
sent the formula as an equation N � pq ¼ 0 and form a
cost function fðx; yÞ ¼ ðN � xyÞ2, where fðx; yÞ is a non-
negative integer and fðp; qÞ ¼ 0 is the minimal value of
the function. The problem Hamiltonian Hp could be

constructed with the same form of fðx; yÞ, i.e., Hp ¼ ½N �
x̂� ŷ�2. Here, operator x̂ is formed by

P
n�1
i¼0 2ið1��i

z

2 Þwhere
n is the bit-width of variable x and �i

z is the �z operator on
the qubit which represents the ith bit of x, and operator ŷ is
formed likewise from y. Thus the ground state of Hp has

the zero energy which denotes the case that N ¼ xy. After
the adiabatic evolution and measurement, we could get the
result p and q. Peng et al. [16] have implemented this
scheme experimentally to factor 21. However in this
scheme, the spectrum of problem Hamiltonian scales
with the number N, thus it is very hard to implement in
experiment when N is large.

To avoid this drawback, Schaller and Schützhold [17]
adopted another scheme by Burges [18] to map the factor-
ing problem to an optimization problem. Their adiabatic
factoring algorithm starts with a binary-multiplication
table which is shown in Table I. In the table, pi and qi in
the first two rows represent the bits of the multipliers and
the following four rows are the intermediate results of the
multiplication and zij are the carries from ith bit to the jth

bit. The last row is the binary representation of number N
to be factorized. In order to get a nontrivial case, we set N
to be odd, thus the last bit (i.e., the least significant bit) of
multipliers is binary value 1. The bit-width of N equals the
summation of p’s and q’s width. So the number of combi-
nations of p’s and q’s width is bounded with n

2 . For a

complete realization, n
2 times of factorization should be

tried for the different combinations. Here we just demon-
strate an example case where p and q has the same width
and set each factor’s first bit (i.e., most significant bit)
to be 1. In a realistic problem, the width of p or q could
not be known a priori. Thus one need to verify the answer
(i.e., pq ¼ N, which cost polynomial time) of each try
until the solution is found. Note that these tries will not
increase the time complexity of the quantum factorization
algorithm.
Then, the factoring equations could be got from each

column in Table I, where all the variables pi, qi, zij in the

equations are binary. To construct the problem
Hamiltonian, first we construct bitwise Hamiltonian for
each equation by directly mapping the binary variables to
operators on qubits. For example, the equation got from b1
column is p1 þ q1 ¼ 1þ 2z12 and the generated
Hamiltonian is H1

p ¼ ðp̂1 þ q̂1 � 1� 2ẑ12Þ2, where each

of the operator p̂1, q̂1 or ẑ12 is formed as
1��̂z

2 on a qubit

representing each variable. Then the problem Hamiltonian
Hp ¼ P

Hi
p is a summation of all the bitwise

Hamiltonians. In this way, the ground state of Hp encodes

the two factors that satisfy all the bitwise equations and is
the answer to our factoring problem. Thus the spectrum of
Hp will not scale with N but log2N.

However, Schaller and Schützhold’s scheme [17] need at
least 14 qubits to factor the number 143, which exceeds the
limitation of current quantum-computation technology. So
before our experiment, we introduce a classical method to
reduce the variables in the equations. For example, because
each of the variables should be 0 or 1, two more equations
z12 ¼ 0 and p1p2 ¼ 0 could be induced from the equation
p1 þ q1 ¼ 1þ 2z12. By applying similar judgements, we
can get a simplified group of equations, which are: p1 þ
q1 ¼ 1, p2 þ q2 ¼ 1 and p2q1 þ p1q2 ¼ 1. For general
cases, Schaller and Schützhold’s original scheme [17] need
Oðnlog2nÞ qubits for factorization, while this simplifica-
tion could reduce all the carry variables at the best situation
and required polynomial operations (i.e., is efficient),
where n is the bit-width of the factorized number N. The
detailed analysis to this simplification is in the supple-
mentary information.
To construct the problem Hamiltonian from this simpli-

fied equations, the bitwise Hamiltonians are constructed by
H1

p ¼ ðp̂1 þ q̂1 � 1Þ2, H2
p ¼ ðp̂2 þ q̂2 � 1Þ2 and H3

p ¼
ðp̂2q̂1 þ p̂1q̂2 � 1Þ2. But this construction method causes
H3

p to have a four-body interactions, which is hard to be

implemented experimentally. In this case, Schaller and
Schützhold [17] introduced another construction form
that for the equation like ABþ S ¼ 0, the problem

Hamiltonian could be constructed by 2½12 ðÂþ B̂� 1
2Þ þ

Ŝ�2 � 1
8 , which could reduce one order of the many-body

interactions in experiment. Thus we replace the third bit-
wise Hamiltonian as H03

p ¼ 2½12 ðp̂1 þ q̂2 � 1
2Þ þ p̂2q̂1 �

1�2 � 1
8 . So the problem Hamiltonian is,

TABLE I. Binary-multiplication table. The top two rows are
binary representations of the multipliers whose first and last bit
are set to be 1. The bits in the bottom row shows the product
number which in our example is 143. zij is the carry bit from the

ith bit to the jth bit in the summation. The significance of each
bit in the column increases from right to left (i.e., from b0 to b7).

b7 b6 b5 b4 b3 b2 b1 b0

Multiplier 1 p2 p1 1

1 q2 q1 1

Binary-multiplication 1 p2 p1 1

q1 p2q1 p1q1 q1
q2 p2q2 p1q2 q2

1 p2 p1 1

Carry z67 z56 z45 z34 z23 z12
z57 z46 z35 z24

Product 1 0 0 0 1 1 1 1
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Hp ¼ 5� 3p̂1 � p̂2 � q̂1 þ 2p̂1q̂1 � 3p̂2q̂1 þ 2p̂1p̂2q̂1

� 3q̂2 þ p̂1q̂2 þ 2p̂2q̂2 þ 2p̂2q̂1q̂2;

where the operators p̂ and q̂ are mapped into the qubits’

space as p̂1 ¼ 1��1
z

2 , p̂2 ¼ 1��2
z

2 , q̂1 ¼ 1��3
z

2 and q̂2 ¼ 1��4
z

2 .

For the adiabatic evolution, without the loss of general-
ity, we choose the initial Hamiltonian H0 ¼ gð�1

x þ �2
x þ

� � � þ �n
xÞ where g is a parameter to scale the spectrum

of H0. And the ground state of the operator is

jc ii ¼ ðj0i�j1iffiffi
2

p Þ�n- a superposition of all the possible states.

So for the computation, we prepare the system on the state
jc ii with the Hamiltonian being H0, and slowly vary the
Hamiltonian from H0 to Hp according to Eq. (1), the

quantum adiabatic theorem ensures that the system will
be at the ground state ofHp, which represents the answer to

the problem of interests.
We numerically simulate the process of factoring 143 as

shown in Fig. 1. Specially, the ground state of the problem
Hamiltonian in Eq. (2) is degenerated. This is because two
multipliers p and q have the same bit-width, thus an
exchange of p and q also denotes the right answer. From
the simulation, we could see that the prime factors of 143 is
11 and 13.
Now we turn to our NMR quantum processor to realize

the above scheme of factoring 143. The four qubits are
represented by the four 1H nuclear spins in 1-bromo-2-
chlorobenzene (C6H4ClBr) which is dissolved in the
liquid-crystal solvent ZLI-1132 (Merck) at temperature
300 K. The structure of the molecule is shown in Fig. 2(a)
and the four qubits are marked by the ovals. By fitting the
thermal equilibrium spectrum in Fig. 2(b), the natural
Hamltonian of the four-qubit system in the rotating frame is

H ¼ 2�
X

i

�iI
i
z þ 2�

X

i;j;i<j

JijI
i
zI

j
z

þ 2�
X

i;j;i<j

Dijð2IizIjz � IixI
j
x � IiyI

j
yÞ; (2)

where the chemical shifts �1 ¼ 2264:8 Hz, �2 ¼
2190:4 Hz, �3 ¼ 2127:3 Hz, �4 ¼ 2113:5 Hz, the dipolar
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FIG. 1 (color online). Process of the adiabatic factorization of
143. (a) the lowest three energy levels of the time-dependent
Hamiltonian in Eq. (1), The parameter g in the initial
Hamiltonian is 0.6. (b) k ¼ 1–5 shows the populations on
computational basis of the system during the adiabatic evolution
at different times marked in a); k ¼ 6 shows the result got from
our experiment. The experimental result agrees well with the
theoretical expectation. The system finally stays on a superpo-
sition of j6i and j9i, which denotes that the answer is fp ¼ 11,
q ¼ 13g or fp ¼ 13, q ¼ 11g.
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FIG. 2 (color online). Quantum register in our experiment. (a) The structure of the 1-Bromo-2-Chlorobenzene molecule. The four 1H
nuclei in ovals forms the qubits in our experiment. (b) Spectrum of 1H of the thermal state �th ¼ P

4
i¼1 �

i
z applying a ½�=2�y pulse.

Transitions are labeled according to descending order of their frequencies. (c) Labeling scheme for the states of the four-qubit system.
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couplings strengths D12 ¼ �706:6 Hz, D13¼�214:0Hz,
D14 ¼ �1166:5 Hz, D23¼�1553:8Hz, D24 ¼
�149:8 Hz, D34 ¼ �95:5 Hz and the J couplings
J12 ¼ 0 Hz, J13 ¼ 1:4 Hz, J14 ¼ 8 Hz, J23 ¼ 8 Hz,
J24 ¼ 1:4 Hz, J34 ¼ 8 Hz. The labeling transition scheme
for the energy levels is shown in Fig. 2(c).

The whole experimental procedure can be described as
three steps: preparation of the ground state ofH0, adiabatic
passage by the time-dependent Hamiltonian HðtÞ, and
measurement of the final state. Starting from thermal equi-
librium, we firstly created the pseudopure state(PPS)
�0000 ¼ 1��

16 Iþ �j0000ih0000j, where � describes the ther-
mal polarization of the system and I is an unit matrix. The
PPS was prepared from the thermal equilibrium state by
applying one shape pulse based on gradient ascent pulse
engineering (GRAPE) algorithm [19] and one z-direction
gradient pulse, with the fidelity 99% in the numerical
simulation. Figure 3(a) shows the NMR spectrum after a
small-angle-flip pulse [20] of state �0000. Then one �

2 hard

pulse was applied to �0000 on the y axis to obtain the

ground state of H0, i.e., j�i�4 (j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
).

More detailed description of the PPS preparation is in the
Supplemental Information [21].

In the experiment, the adiabatic evolution was approxi-
mated by M discrete steps [13,14,16,20,22]. We utilized
the linear interpolation sðtÞ ¼ t=T, where T is the total
evolution time. Thus the time evolution for each adiabatic
step is Um ¼ e�iHm� where � ¼ T=M is the duration of
each step, andHm ¼ ð1� m

MÞH0 þ ðmMÞHp is the intermedi-

ate Hamiltonian of the mth step. And the total evolution
applied on the initial state is Uad ¼

Q
M
m¼1 Um. The adia-

batic condition is satisfied when T, M ! 1 [23]. Here we

chose the parameters g ¼ 0:6, M ¼ 20 and T ¼ 20.
Numerical simulation shows that the probabilities of the
system on the ground states of Hp is 98.9%, which means

that we could achieve the right answer to the factoring
problem of 143 almost definitely. We packed together the
unitary operators every five adiabatic steps in one shaped
pulse calculated by the GRAPE method [19], with the
length of each pulse 15 ms and the fidelity with the
theoretical operator over 99%. So the total evolution time
is about Ttot ¼ 60 ms.
Finally, we measured all the diagonal elements of the

final density matrix �fin using the Hamiltonian’s diagonal-
ization method [24]. 32 reading out GRAPE pulses for
population measurement were used after the adiabatic
evolution, with each pulse’s length 20 ms. Combined
with the normalization condition

P16
i¼1 PðiÞ ¼ 1, we recon-

structed all the diagonal elements of the final state �fin.
Step k ¼ 6 of Fig. 1(b) shows the experimental result of all
the diagonal elements excluding the decoherence through

compensating the attenuation factor e�Ttot=T
�
2 , where Ttot is

the total evolution time 60 ms and T�
2 is the decoherence

time 102 ms. The experiment (step k ¼ 6) agrees well with
the theoretical expectations (step k ¼ 5), showing that the
factors of 143 is 11 and 13.
On the other hand, to illustrate the result more directly

from the NMR experiment, a comprehensible spectrum
was also given by applying a small angle flip (3�) after
two � operators on the second and third qubit and one
gradient pulse,

�out ¼ GzðR2;3
y ð�Þ�finR

2;3
y ð�ÞyÞ (3)

For the liquid-crystal sample, since the Hamiltonian
includes nondiagonal elements, the eigenstates are not
Zeeman product states but their linear combinations, ex-
cept j0000i and j1111i. If there just exist two populations
j0000ih0000j and j1111ih1111j, the spectrum would be
comprehensible as containing only two main peaks after
a small angle pulse excitation. The motivation of adding
the � pulses after the adiabatic evolution is conversing
j0110ih0110j and j1001ih1001j to j0000ih0000j and
j1111ih1111j, while the gradient pulse was used to make
the output �out concentrated on the diagonal elements of
the density matrix. Thus the small-angle-flip observation
would be easily compared with �0000 and �1111 (Fig. 3),
indicating that the factors of 143 is 11 and 13.
To be concluded, we improved the adiabatic factoring

scheme and implemented it to factor 143 in our NMR
platform. The sample we used for experiment is oriented
in the liquid crystal thus it has dipole-dipole coupling
interactions which are utilized for the computation. The
experimental result matches well with theoretical expecta-
tions. To our knowledge, this is the first experimental
realization of quantum algorithms to factor a number larger
than 100.
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FIG. 3 (color online). NMR spectra for the small-angle-flip
observation of the PPS and the output state �out, respectively.
The blue spectra (thick) are the experimental results, and the red
spectra (thin) are the simulated ones. (a) (c) Spectra correspond-
ing to the PPS �0000 and �1111 by applying a small-angle-flip (3�)
pulse. The main peaks are No. 33 and No. 3 labeled in the
thermal equilibrium spectrum. (b) Spectrum corresponding to
the output state �out after applying a small-angle-flip (3�) pulse,
which just consists of the peaks of No. 33 and No. 3.
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