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We study information processing in populations of Boolean networks with evolving connectivity

and systematically explore the interplay between the learning capability, robustness, the network topology,

and the task complexity. We solve a long-standing open question and find computationally that, for

large system sizes N, adaptive information processing drives the networks to a critical connectivity

Kc ¼ 2. For finite size networks, the connectivity approaches the critical value with a power law of the

system size N. We show that network learning and generalization are optimized near criticality, given that

the task complexity and the amount of information provided surpass threshold values. Both random and

evolved networks exhibit maximal topological diversity nearKc.We hypothesize that this diversity supports

efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of

the fitness values is maximal in critical network populations. Finally, we discuss implications of our results

for determining the optimal topology of adaptive dynamical networks that solve computational tasks.
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In 1948, Turing proposed several unorganized machines
made up from randomly interconnected two-input NAND

logic gates [1] as a biologically plausible model for com-
puting. He also proposed to train such networks by means
of a ‘‘genetical or evolutionary search.’’ Much later,
random Boolean networks (RBNs) were introduced as
simplified models of gene regulation [2,3], focusing on a
system-wide perspective rather than on the often unknown
details of regulatory interactions [4]. In the thermodynamic
limit, these disordered dynamical systems exhibit a dy-
namical order-disorder transition at a sparse critical con-
nectivityKc [5]. For a finite system sizeN, the dynamics of
RBNs converge to periodic attractors after a finite number
of updates. At Kc, the phase space structure in terms of
attractor periods [6], the number of different attractors [7],
and the distribution of basins of attraction [8] is complex,
showing many properties reminiscent of biological net-
works [3]. In cellular automata, complex computation
has been hypothesized to occur where the rules show
complex dynamics at ‘‘the edge of chaos’’ [9,10]. This
claim was refuted in Ref. [11]. However, the argument in
Ref. [11] rests on symmetric spaces in the cellular autom-
ata lattice and rule space. These results therefore do not
apply to RBNs. Phase transition in information dynamics
was studied in Ref. [12]. State-topology coevolution in
RBNs was studied in Refs. [13–15], and it was shown
that networks evolved toward a critical connectivity
Kc ¼ 2. This Letter presents the first study to link complex
dynamics, topology, and task solving in an open RBN.

In Refs. [16–19], simulated annealing and genetic algo-
rithms (GAs) were used to train feedforward RBNs and to
study the thermodynamics of learning. For a given task

with predefined input-output mappings, only a fraction of
the input space is required to train networks that generalize
perfectly on all input patterns. This fraction depends on the
network size and the task complexity. Moreover, the more
inputs a task has, the smaller the training set needs to be to
obtain full generalization. In this context, learning refers to
correctly solving the task for the training samples, while
generalization refers to correctly solving the task for novel
inputs. We use adaptation to refer to the phase where
networks have to adapt to ongoing mutations (i.e., noise
and fluctuations) but have already learned the input-output
mapping. In this Letter, we study adaptive information
processing in populations of Boolean networks with an
evolving topology. Rewiring of connections and mutations
of the functions occur at random, without bias toward
particular topologies (e.g., feedforward). We systemati-
cally explore the interplay between the learning capability,
the network topology, the system size N, the training
sample T, and the complexity of the computational task.
First, let us define the dynamics of RBNs. A RBN is a

discrete dynamical system composed of N automata. Each
automaton is a Boolean variable with two possible states:
f0; 1g, and the dynamics is such that F:f0; 1gN � f0; 1gN,
where F ¼ ðf1; . . . ; fi; . . . ; fNÞ, and each fi is represented
by a look-up table of Ki inputs randomly chosen from the
set of N automata. Initially, Ki neighbors and a look-up
table are assigned to each automaton at random. For prac-
tical reasons, we restrict the maximum Ki to 8. An autom-
aton state �t

i 2 f0; 1g is updated by using its corresponding
Boolean function �tþ1

i ¼ fið�t
i1
; �t

i2
; . . . ; �t

iKi
Þ.

The automata are updated synchronously by using their
corresponding Boolean functions. For the purpose of
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solving computational tasks, we define I inputs and O
outputs. The inputs of the computational task are randomly
connected to an arbitrary number of automata. The con-
nections from the inputs to the automata are subject to
rewiring and are counted to determine the average network
connectivity hKi. The outputs are read from a randomly
chosen but fixed set of O automata. All automata states are
initialized to ‘‘0’’ for each input pattern before simulating
the network.

Methodology.—We evolve the networks by means of a
traditional GA to solve three computational tasks of vary-
ing difficulty, each of which defined on a 3-bit input: full-
adder (FA), even-odd (EO), and the cellular automata rule
85 (R85) [20]. The FA task receives two binary inputs A
and B and an input carry bit Cin and outputs the binary sum
of the three inputs S ¼ Aþ Bþ Cin on the 2-bit output
and the carry bit Cout. The EO task outputs a 1 if there is an
odd number of 1’s in the input (independent of the order)
and a 0 otherwise. R85 is defined for three binary inputs A,
B, and C and outputs the negation of C. The output for R85
task therefore depends only on one input bit. The EO task
represents the most difficult task, followed by the FA and
R85 tasks. Task difficulty is the complexity of information
integration needed in the input to determine the output.
This can be measured through information-theoretical de-
composability of a task. We can represent the task itself as
the contingency table of its inputs and outputs. Different
decomposition models of the task are the different ways
that we can calculate the marginal probabilities from the
original contingency table [21]. We calculate a weighted
sum of the vector of the information content of all possible
decomposition models of a task F. This can be summarized
in decompositionF ¼ P

m2ModelsF
wm lnfm, where ModelsF

is the set of all decomposition models of F and the weight
wm of a model is proportional to its degrees of freedom.
The information content of a model is calculated by using

lnfm ¼ 1� Hm�HF

Hind�HF
. Here, Hm is the entropy of the model,

HF is the entropy of F, and Hind is the entropy of the
independence model (all input and output variables are
assumed independent). Higher values for decompositionF
mean that the task is more decomposable and therefore less
difficult.

The genetic algorithm we use is mutation-based only;
i.e., no crossover operation is applied. For all experiments
we ran a population of 30 networks with initial connectiv-
ity hKini ¼ 1 and a mutation rate of 0.8. Each mutation is
decomposed into 1þ � steps repeated with probability
pð�Þ ¼ 0:5�þ1, where � � 0. Each step involves flipping
a random location of the look-up table of a random autom-
aton combined with adding or deleting one link. Each
population is run for 30 000 generations. We repeat each
evolutionary run 30 times and average the results. In
each generation and for each tested input configuration,
the RBN is run for a convergence time t / N updates.
Afterward, we run the network for an additional t / N

updates to record the activity of the output nodes. If the
activity of an output node is ‘‘1’’ for at least half of the t
time steps, we interpret the output as a 1 and as 0 other-
wise. For an evolutionary run of training size T, the train-
ing sample set M is randomly chosen at each generation
without replacement from the 23 possible input patterns.
During each generation, the fitness of each individual is
determined by f ¼ 1� EM, where EM is the normalized
average error over the T random training samples: EM ¼
1
T

P
i2M

P
j2Oðaij � oijÞ2. aij is the value of the output

automata j for the input pattern i, and oij is the correct

value of the same bit for the corresponding task. The
generalization score is calculated by using the same equa-
tion with M including all 23 inputs rather than a random
sample. Finally, selection is applied to the population as a
deterministic tournament. Two individuals are picked ran-
domly from the old population, and their fitness values are
compared. The better individual is mutated and inserted
into the new population; the worse individual is discarded.
We repeat the process until we have 30 new individuals in
the new population.
Results.—We observe a convergence of hKi close to the

critical value Kc ¼ 2 for large system sizes N and training
sample sizes larger than or equal to T ¼ 4. For T ¼ 8,
populations always evolve close to criticality for moderate
N. For smaller T, the average over all evolutionary runs is
found at slightly higher values of hKi (Fig. 1). If the
average is taken only over the best individuals, however,
hKi values close to Kc are recovered. This observation can
be explained from the fact that for T < 8, due to the limited
information provided for learning, some populations
cannot escape local optima and, hence, do not reach maxi-
mum fitness. Suboptimal network populations show a large
scatter in hKi values in the evolutionary steady state, while
those with high fitness scores cluster around Kc ¼ 2
(Fig. 1, inset). For the simple R85 task, we do not observe
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FIG. 1 (color online). Convergence of the average network
connectivity as a function of the GA generations tg. The FA

task with T ¼ 4 and N ¼ 100. The curves are averaged over 30
evolutionary runs (red), only the 22 best (green), and the 15 best
(light blue) populations, respectively. Inset: Scatter plot correlat-
ing average hKiðtgÞ and average generalization hGiðtgÞ of a

successful population (black) and a suboptimal population
(purple).
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any convergence to Kc ¼ 2, independent of the training
samples. For the other tasks, the finite size scaling of hKi
(Fig. 2) exhibits convergence towards Kc with a power law
as a function of the system sizeN. For T ¼ 8, the exponent
b of the power law for the three tasks EO, FA, and
R85 is �1:63, �1:11, and �0:30, respectively (Fig. 2).
Altogether, these results suggest that the amount of infor-
mation provided by the input training sample helps to
drive the network to a critical connectivity.

Interestingly, the population dynamics in our model
follow Fisher’s fundamental theorem of natural selection,
which attributes the rate of increase in the mean fitness to
the increased fitness variance in the population [22]. It has
been shown in GAs that the diversity maximization [23]
makes more configurations of the search space accessible
to the genetic search to find optimal solutions [16–18].

Indeed, we find that the standard deviation of the fitness
values in the populations has a local maximum near Kc

(Fig. 3, inset), with a sharp decay toward larger hKi,
indicative of maximum diversity near criticality.
Evidently, this diversity helps to maintain a high fitness
population in the face of continuous mutations with a
fairly high rate (0.8 in our study). While the average fitness
can be lower (and often is), compared to less diverse
populations, the probability to find and maintain high
fitness solutions is strongly increased. Indeed, we find
that populations where the best mutant has maximum
fitness (f ¼ 1) sharply peak near Kc (Fig. 3), as well as
populations where the best mutant reaches perfect general-
ization. To find a possible source of fitness diversity, we
determined several topological measures of the networks
[24]: the eccentricity (maximum shortest path between a
vertex v and any other vertex in a graph), the betweenness
centrality (the average fraction of shortest paths between
all vertices in a graph that passes through a vertex v), the

participation, and the characteristic path length. These
measures were calculated for Erdös-Rényi, exponential
random graphs, as well as for the evolved networks
(Fig. 4). In fact, we find that the graph-theoretical measures
have maximal variance near Kc ¼ 2. Similarly, other
authors have shown that dynamical diversity is maximized
near Kc, too [25]. Our results suggest that evolving RBNs
can indeed exploit this diversity to optimize learning.
In addition, we find that, during the learning process of

the networks, the in-degree distribution changes from a
Poissonian to an exponential distribution. In particular, we
observe that the topological properties of the networks
reach a compromise between Erdös-Rényi graphs and the
exponential random graphs. The same observation was
made in input- and outputless RBNs that were driven to
criticality by using a local rewiring rule [14]. This signifi-
cant topology change is related to diversity (entropy) max-
imization during the learning phase [26]. However, this is
beyond the scope of this Letter and will be discussed in a
separate publication.
Finally, we measured the damage spreading in the

evolved RBNs [5] to determine their dynamical regime.
The damage spreading dtþ1 is measured by changing the
state of a randomly selected node in two identical net-
works. The two networks are simulated for a single time
step, and the damage spreading �d is then calculated by

averaging the ratio dtþ1

dt
over many trails with random initial

network configurations. One observes that for critical net-
works �d ¼ 1, for supercritical networks �d > 1, and for
subcritical networks �d < 1. We see that, for networks
with a high fitness, �d peaks around 1 for all N.
Discussion.—We investigated the learning and general-

ization capabilities in RBNs and showed that they evolve
toward a critical connectivity of Kc � 2 for large networks
and large input sample sizes. For finite size networks, the
connectivity approaches the critical value with a power law
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FIG. 2 (color online). Finite size scaling of hKi as a function of
N for the three tasks, EO (black), FA (blue), R85 (magenta),
and the training sample size T ¼ 4 (a) and T ¼ 8 (b). Points
represent the data of the evolved networks; lines represent the
fits. The finite size scaling for hKi shows that it scales with a
power law as a function of the system size N. The dashed lines
represent the power-law fit of the form a � xb þ c. We favor the
data for larger N by weighting the data according to N=Nmax,
where Nmax ¼ 500. The insets show Kc � c as a function of N
on a log-log scale.

 0.095

 0.105

 0.115

 0.125

 0.135

1 2 3 4

0
 0.005

 0.01
 0.015

0.02
0.025

0.03
0.035

0.04
0.045

0 1 2 3 4 5 6 7  8
K

K

σ
f

p
K

f b
es

t
=

1
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of the system size N. We showed that network learning and
generalization are optimized near criticality, given that the
task complexity and the amount of information provided
surpass threshold values. Furthermore, critical RBN pop-
ulations exhibit the largest diversity (variance) in fitness
values, which supports learning and robustness of solutions
under continuous mutations. By considering graph-
theoretical measures, we determined that Kc corresponds
to a region in network ensemble space where the topologi-
cal diversity is maximized, which may explain the
observed diversity in critical populations.

Interestingly, we observe that RBN populations that are
optimal with respect to learning and generalization tend to
show average connectivity values slightly below hKi ¼ 2.
This may be related to previous results indicating that
Kc < 2 in finite size RBNs [27].

Examination of the attractors of the final population
confirms that the computation happens as partitioning of
the state space into disjoint attractors [28]. During the
evolution, the attractor landscape changes so that there
are enough attractors to properly process the inputs. The
entire task is encoded as a hypercycle (i.e., a set of mu-
tually reachable attractors) in the network dynamics. The
input combinations play the role of a multivalued switch
that pushes the dynamics out of one attractor into the next
along the hypercycle. The emergence of the large attractor
basins makes the computation highly robust to perturba-
tions in the node state while maintaining sensitivity to

input signals. All networks in our final population converge
to fixed-point or cyclic attractors.
In summary, we solved a long-standing question and

showed that learning of classification tasks and adaptation
can drive RBNs to the edge of chaos [3], where high-
diversity populations are maintained and ongoing adapta-
tion and robustness are optimized. Our study may have
important implications for determining the optimal topol-
ogy of a much larger class of complex dynamical networks
where adaptive information processing needs to be
achieved efficiently, robustly, and with limited connectiv-
ity (i.e., resources). This has applications, e.g., in the area
of neural networks and complex networks and, more
specifically, in the area of emerging molecular and nano-
scale networks and computing devices, which are expected
to be built in a bottom-up way from vast numbers of
simple, densely arranged components that exhibit high
failure rates, are relatively slow, and are connected in an
unstructured way.
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