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We investigate how a magnetic field induces one-dimensional edge channels when the two-dimensional

surface states of three-dimensional topological insulators become gapped. The Hall effect, measured by

contacting those channels, remains quantized even in situations where the � term in the bulk and the

associated surface Hall conductivities, �S
xy, are not quantized due to the breaking of time-reversal

symmetry. The quantization arises as the � term changes by �2�n along a loop around n edge channels.

Model calculations show how an interplay of orbital and Zeeman effects leads to quantum Hall transitions,

where channels get redistributed along the edges of the crystal. The network of edges opens new

possibilities to investigate the coupling of edge channels.

DOI: 10.1103/PhysRevLett.108.126807 PACS numbers: 73.25.+i, 73.20.At, 73.43.�f

In topological insulators (TIs) the topological properties
of the band structure lead to the formation of protected
metallic states at the surface. Soon after their theoretical
prediction [1,2] as a generalization of Haldane’s Chern
insulator [3] their two-dimensional (2D) variant—the
quantum spin Hall insulator—was realized in quantum
well heterostructures by König et al. [4]. Later, three-
dimensional (3D) varieties of this novel form of insulator
were predicted [5–7] and again realized afterwards [8,9].
3D TIs come as strong and weak TIs. Strong TIs (STIs)
have a metallic surface which is protected against local-
ization due to its helical nature. Band topology enforces
that the surface metal can be described as an effective 2D
Dirac theory of massless electrons. Soon after the realiza-
tion of 3D STIs it was understood that the surfaces of these
materials could give way to an unconventional Hall re-
sponse whenever the surface is gapped by perturbations
which break time-reversal symmetry (TRS). This is related
to the axion quantum electrodynamics [10–12] and the
variation of the � angle at an interface between a bulk
material (� � 0) and vacuum (� ¼ 0). STIs are character-
ized by the quantized value � ¼ �. When a gap is opened,
a dissipationless surface conductivity with a half-integer

Hall conductivity [11,12], �S
xy ¼ e2

2h , arises. Importantly,

this value is not quantized if both TRS and inversion
symmetry (IS) are broken in the bulk.

Recently, Brüne et al. [9] have experimentally observed
a quantized Hall effect for films of HgTe which can be
considered 3D STIs, with the magnetic field applied per-
pendicular to the film. Both in the experiment and in two
theoretical studies [13–15] a field configuration was used,
where only two faces of the crystal were gapped.

In this Letter we investigate the Hall response of a 3D
STI in the presence of a bulk magnetic field oriented such
that all surface excitations are gapped. We first study how
the � term characterizing the 3D bulk, the surface Hall

conductivities, the edge channels, and the quantum Hall
effect observed by contacting those edge channels are
related to each other. We then study a concrete lattice
model (inspired by the HgTe band structure) to investigate
how the location and number of edge channels can be
controlled.
We consider a single crystal STI with planar surfaces in

the presence of a magnetic field in a configuration, where
both the bulk and all surfaces—up to one-dimensional edge
channels discussed below—are gapped. The macroscopic
electrodynamic response is described by an effective topo-
logical field theory in (3þ 1) dimensions defined by the
action [11,12,16,17]

S� ¼ e2

4�hc

Z
d3rdt������@�A�@�A�

¼ e2

2�hc2

Z
d3rdt�E �B: (1)

This term is referred to as the � term, well known from the
field theory of axion electrodynamics [10]. Several prop-
erties [11,12,16] are important in the following: (i) The
value of � is defined modulo 2�; (ii) S� is an integral over
a total derivative, i.e., it has no effect for � ¼ const, but
matters at interfaces and surfaces, where � changes (see
below); (iii) within the bulk, � ¼ �b is constant (we define
0 � �b < 2� to avoid ambiguities). In the presence of
either IS or TRS, �b assumes the values 0 or �. As TRS
band insulators have �b ¼ 0 and STIs have �b ¼ �, this
can be used to classify STIs (even in the presence of
interactions). In the absence of both IS and TRS, �b is
not quantized, and a TI can adiabatically be transformed
into a band insulator.
Varying Eq. (1) with respect to A� one obtains dissipa-

tionless currents
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j ¼ � e2

2�h
r�ðrÞ �E (2)

located at the surface across which � changes. For a
homogeneous electric field at a surface Si one obtains the
surface Hall conductivity by integrating the current per-
pendicular to Si. Here it is important to realize that in the
vacuum � ¼ 2�n with integer n. We find it convenient to
associate with each surface Si an integer ni defined by the
value of � obtained by approaching the surface (see below
for a numerical calculation). Defining the Hall conductiv-
ity �H

i of Si by measuring the current in the direction
n̂i �E for an electric field parallel to the surface, one
obtains from Eq. (2)

�H
i ¼ e2

h

�
ni � �b

2�

�
: (3)

For �b ¼ 0 one recovers the integer quantization of a
conventional quantum Hall system and for �b ¼ � the
well-known shift obtained for the 2D Dirac equation. In
general, any value of �b is allowed. For a 3D sample withN
surfaces the N integers ni and the constant �b completely
characterize the macroscopic Hall response.

As a simple application we can consider a quasi-2D slab
with surfaces S1 and S2, and an electric field which is the
same on the top and bottom of the sample. As n̂1 ¼ �n̂2,
the total 2D Hall response is given by

�2d
H ¼ �H

1 � �H
2 ¼ e2

h
ðn1 � n2Þ; (4)

yielding the well-known integer-quantized form which is
independent of the nonquantized �b.

This analysis does, however, not answer the question of
what is actually measured when metallic contacts are
attached to a 3D sample to obtain the Hall response.
Interestingly, Chu, Shi, and Shen [14] argue that in the
presence of dissipative surfaces (not considered by us) it
might be possible to observe directly an approximately
half-quantized �H

i in a four-terminal measurement. But
in general, neither �H

i nor �2d
H are measured. Instead, one

has to investigate a network of gapless current-carrying 1D
channels (also bent, nonplanar quantum Hall junctions
show similar networks [18]). Each chiral 1D channel car-

ries exactly one conductance quantum, I ¼ e2

h ��, where

� is the scalar potential. To find those, we use Eq. (2) to
calculate the current through a 2D manifold whose bound-
ary is given by an equipotential line, �ðrÞ ¼ �e. From
Stokes’ theorem one obtains assuming that �ðrÞ is singular
at most at one point on the manifold

I ¼ e2

h
W��; W ¼ 1

2�

I
dr � r� ¼ ni � nj; (5)

with �� ¼ �s ��e, where �s is the potential at the
singularity. Therefore, the number of 1D channels is given
by the (integer) winding number W of the � term, and

their location tracks the singularities in �ðrÞ associated
withW � 0. The line integral is taken along the boundary
of the manifold in clockwise direction looking along the
direction of I [see Fig. 1(e)]. For crystals with flat surfaces,
the channels are localized along the edges, and the number
of edge channels W is obtained from the integers charac-
terizing the adjacent surfaces, W ¼ ni � nj, where in

Fig. 1(e)i corresponds to the top surface while j is the right
surface.
Note that the winding numbers are quantized for any

value of �b. This reflects that the quantization of the Hall
effect (based on charge quantization) is a more robust
concept than the Z2 quantization used to classify TIs
(which relies on TRS). Deforming the TI into a ring
(with a macroscopic cross section) one can directly apply
Laughlin’s gauge argument [19] for an alternative proof of
the quantization of the Hall effect measured by contacting
those edge channels.
To determine how different networks of edge channels

can be realized, we study a concrete example. As a mini-
mal model [5] for a TI we consider four bands in a cubic
lattice using orbitals inspired by strained 3D HgTe [9]
(different orbitals are important for 2D HgTe). We intro-
duce four basis states [20] within the unit cell:

j1i ¼ jE1; "i ¼ js; "i; j3i ¼ jE1; #i ¼ js; #i;
j2i ¼ jLH; "i ¼ ðjpx þ ipy; #i � 2jz; "iÞ= ffiffiffi

6
p

;

j4i ¼ jLH; #i ¼ �ðjpx � ipy; "i þ 2jz; #iÞ= ffiffiffi
6

p
:

We have omitted the heavy hole states present in HgTe
which hybridize with the E1 states, because they do not
modify the topological properties of the system. In this

basis, TRS is implemented by �̂ ¼ �i�z � s0K̂, where �z

acts in spin space, and the 2� 2 identity matrix s0 acts on

FIG. 1 (color online). (a),(b) Two possible edge channel con-
figurations which are projected onto a plane in (c) and (d),
respectively. On each face the integer ni is written which
characterizes the surface and from which the number of edge
channels can be obtained using Eq. (5) (for the planar graphs,
ni ¼ 0 on the outside). The two configurations can be obtained
by small rotations of the field, see Fig. 4. (e) Orientation of line
integrals used in Eq. (5). (f) Numbering of edges and coordinate
system.
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the orbital degrees of freedom (K̂ is complex conjugation,
� and s are standard Pauli matrices). Parity is implemented

via P̂ ¼ �0 � sz. Twofold rotation symmetries along the x,

y, and z directions are generated by R̂xð�Þ ¼ i�x � sz,

R̂yð�Þ ¼ �i�y � sz, and R̂zð�Þ ¼ i�z � s0. The 4� 4

Hamiltonian can conveniently be expressed in terms of
the identity, �0, five Dirac matrices �a, and their ten
commutators �ab ¼ ½�a;�b�=ð2iÞ which satisfy the

Clifford algebra, f�a;�bg ¼ 2�a;b�
0. Using �ð1;2;3;4;5Þ ¼

ð1 � sz;��y � sx; �x � sx;�1 � sy; �z � sxÞ we find as a

minimal model

H ¼ �t
X

n;j¼1;2;3

�
�y

nþêj

�1 � i�jþ1

2
e
iAn;nþêj�n þ H:c:

�

þX
n

�y
n ðm�1 þ�1�

5 þ �2�
15Þ�n þHZ; (6)

where m is the tuning parameter and t ¼ 1 is the hopping
amplitude. �1 and �2 parametrize the breaking of IS, �1

also breaks TRS. For systems without inversion symmetry
(as HgTe), �2 � 0 and a finite �1 will be induced by
magnetic fields. Orbital effects of the magnetic field are
described by the Peierls factor expðiAn;nþêjÞ defined on the
link from site n to the neighboring site nþ êj. The Zeeman

effect takes the usual form gB � �, and for above model we
obtain the following Zeeman Hamiltonian:

HZ ¼
X
n

c y
n ½�Bx

Zðgþ�25 þ g��34Þ �By
Zðgþ�35 � g��24Þ

þBz
Zðgþ�23 þ g��45Þ��n; (7)

where B Z ¼ �BB and g� ¼ ðgE1 � gLHÞ=2 are linear
combinations of the g factors of the E1 and LH subbands.
For our plots we use m ¼ �2, �2 ¼ 0 (�2 � 0 does not
change our results qualitatively), gþ ¼ g� ¼ 1, and for a
magnetic field in the yz plane we use the Landau gauge,
i.e., An;nþêj ¼ 2�ð�yzn ��zynÞ�êj;êx , where �i is the

flux per unit cell in direction i in units of the flux quantum.
For �1 ¼ �2 ¼ 0 and vanishing magnetic field, the

model describes a trivial band insulator for jmj> 3 and a
STI for 1< jmj< 3 (a weak TI for jmj< 1). At m ¼ �3
the bulk band structure is characterized by a 3D Dirac
point. For 0< �m ¼ mþ 3 � 1 and �i, B

i
Z, �i � �m

one can obtain analytically the theory for a surface with
normal vector n̂. First, one obtains the surface state for
vanishing �i, B

i
Z, �i from the standard bound state solu-

tion of the 3D Dirac equation [21] with space dependent
mass mD ¼ ��m sgnðn̂ � rÞ, where a negative mD for n̂ �
r> 0 mimics the vacuum. From this one obtains the 2D
Dirac equation describing the surface of a TI [21]. To linear
order, the effects of �i and Bi

Z are just given by the
projection of H on the surface state, while the orbital
effects are covered by minimal substitution. We obtain

Hsurf ¼ vF�
	 �

�
p� e

c
A

�
� �0�þmZ�

3; (8)

mZ ¼ n̂ � ð�g�Bx
Z;�g�By

Z; g
þBz

ZÞ ��1; (9)

where � ¼ ð�1; �2Þ, p ¼ ðpx; pyÞ denote the momenta

perpendicular to n̂ (shifted by a BZ dependent constant),
�3 is the Pauli matrix parallel to n̂, and � denotes the
chemical potential. A is the vector potential of the normal
field component appropriately transferred into the new
basis. Note the unexpected dependence of mZ on the
direction of the magnetic field which allows us to control
orbital and Zeeman effects independently. For example,
mZ can be finite even for a magnetic field parallel to the
surface.
It is an elementary exercise [3] to compute the spectrum

of the massive Dirac theory in a field (8):

Ej ¼ sgnðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

cjjj þm2
Z

q
; Ej¼0 ¼ sgnðB?ÞmZ; (10)

with integer j and !c ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeB?j

p
. B? ¼ B � n̂ deter-

mines the orbital contribution of the magnetic field. As
long as B is not almost parallel to the surface, mZ is only
important for j ¼ 0 as m2

Z 
 ð�BBÞ2 � v2
FjeB?j.

As the levels (10) do not cross, the results for the integers
ni characterizing the surfaces, do not depend directly on
mZ and are obtained from the quantumHall effect for Dirac
fermions [3] and Eq. (3):

n ¼
�
jþ 1; B? > 0

�j; B? < 0
for Ej < �< Ejþ1: (11)

Using Eqs. (9)–(11) one can therefore calculate the rele-
vant winding numbers which determine the position of the
edge channels, see Eq. (5) and Fig. 1. Note that � can be
controlled independently on each surface by appropriate
gates and might also depend on details of the surface
chemistry. As an example, we show in Fig. 2 how the
number of edge channels changes when a magnetic field

0 π/4 π/2
-3

-2

-1

0

1

2

3 edge 1
edge 2
edge 3

0
-3

-2

-1

0

1

2

3 edge 4
edge 5
edge 6

FIG. 2 (color online). Number of edge channels along edges
1–6 defined in Fig. 1(e) for � ¼ 0:02, �1 ¼ 0, B ¼
0:001ð1; cos’; sin’Þ= ffiffiffi

2
p

, as a function of the rotation angle ’
obtained from Eqs. (9)–(11). The sign indicates whether the
current runs parallel or antiparallel to the x̂, ŷ, and ẑ directions.
For the two configurations indicated by gray vertical lines, the
edge configuration is shown in Figs. 1(a) and 1(b). The number
of channels on the six other edges is obtained by inversion
symmetry (assumed here).
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is rotated around the x axis. This allows us to realize a wide
variety of channel configurations.

The low-energy theory (8) with infinite cutoff does not
account for the change of the � term in the bulk, while it
can be computed numerically by considering the full
model (6). For a slab periodic in the xy plane but finite in
z direction, we have calculated from the Kubo formula the
matrix of conductivities, �xyði; jÞ, describing the current in
the x direction in layer i when an electric field is applied
in layer j in the y direction (note that i, j number the layers
in the z direction). For simplicity, we considered here only
a Zeeman magnetic field. �xyði; jÞ is to a good approxima-

tion diagonal [as implicitly assumed in Eq. (1)], and we
plot in Fig. 3 �xyðiÞ ¼

P
j�xyði; jÞ, i.e., the current distri-

bution for a uniform electric field. �xyðiÞ defines the

change of � across the individual layer [see Eq. (2)], and
� as function of layer index obtained as the cumulative sum
of �xyðiÞ up to layer i is plotted also in Fig. 3 (see caption

for formula). The bulk �b can be read off from a central
layer of the slab. For finite �1 such that TRS and IS are
broken, �b and the surface conductivities are not quantized,
but the total 2D Hall response remains quantized as
in Eq. (4).

To illustrate the localization of the edge channels along
the edges of the 3D crystal and to show how our findings
relate to the band structure, we have calculated the prop-
erties of an infinite beam of dimension1� 20� 20 using
exact diagonalization. In the appropriate Landau gauge, the
momentum along the beam is conserved and one obtains
the band structure of Fig. 4(a). To obtain the position of the
conducting channels we plot in Fig. 4 the corresponding
probability distribution: as expected they are located at the
edges of the sample. By changing the chemical potential a
sequence of quantum Hall transitions is obtained. The first
three figures show how the edge channels jump from one
edge to the other, conserving the number of channels. For

other cases, the number of channels can also be increased
as in a conventional quantum Hall transition and one can
obtain more complex situations; see last panel.
For a given edge channel configuration one can deter-

mine the conductance measured when contacting those
channels using (i) Eq. (5), (ii) Kirchhoff’s law (current
conservation at each corner), and (iii) that the electro-
chemical potential remains constant when channels split.
For the circuit shown in Fig. 1(d) one obtains �a ¼ �b ¼
�d, �e ¼ �g ¼ �h ¼ �a � h

e2
I, �c ¼ �a � 2 h

e2
I, and

�f ¼ �a � h
2e2

I. Defining the cross conductances G	
 ¼
I=ð�
 ��	Þ, this implies that not only, e.g., Ggb ¼ e2=h

and Gfa ¼ 2e2=h can be measured but also Gcf ¼ 2
3 e

2=h.

At the points where two channels meet, the power Pi is
dissipated, with a quantized Ohmic conductance I2=Pi

which takes the values 2e2=h and 1
2 e

2=h at the ‘‘merging’’

corners above contacts e and f, respectively. Such a quan-
tized heat source might have interesting applications for
the study of heat transport in TIs.
Can a topological insulator uniquely be identified by

measuring the quantum Hall effect? For a fixed magnetic
field this is not possible since there are situations where, for
example, all surfaces can be gapped and there is not a
single edge channel anywhere. The changing pattern of

-0.5

0

0.5

1

σ xy
/(

e2 /h
) ∆

1
=0

∆
1
=0.2

1 5 10 15 20
0

π

2π

θ

∆
1
=0.3

∆
1
=0.5

FIG. 3 (color online). �xyðiÞ and �i ¼ 2�jþ @

e2
P

j�i�xyðjÞ as
a function of distance from the surface for an infinite slab in the
xy plane (20 layers, �i ¼ 0, gþBZ ¼ 0:25). The integer j is
chosen such that 0 � � < 2� in the center. While each surface
conductivity �H

i and �b are not quantized, �2d
H ¼ P

i�xyðiÞ and,
equivalently, W ¼ �ð20Þ � �ð0Þ are quantized. W jumps from
2� to 0 at �1 � gþBz

Z ¼ 0:25, wheremZ in Eq. (9) changes sign

and one surface undergoes a quantum Hall transition.

FIG. 4 (color online). Band structure of a beam of dimensions
(1� 20� 20) as a function of the momentum kx along the
beam (�y ¼ �z ¼ 0:018, g�By

Z ¼ gþBz
Z ¼ 0:14, �1 ¼ 0:1).

Flat parts in the central region represent Landau levels while
dispersive parts are one-dimensional edge channels. Lower
panel: Position of the edge channels for four chemical potentials
marked above. Red right triangle (blue left triangle) denotes
edge channels running parallel (antiparallel) to the x̂ direction.
For � � 0, when mZ dominates, B points towards or away from
the edge channels, while a more conventional perpendicular
arrangement is obtained in the orbitally dominated regime, �3.
The last figure shows three edge modes moving in the x̂ direction
on one edge, while three�x̂modes are distributed over the other
three edges. Also two counterpropagating channels at the same
edge can be obtained, e.g., for �̂ (not shown).
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edge channels when field strength or direction or gate
voltages are varied, can, however, serve as a fingerprint
of topological insulators and their Dirac metal. The net-
work of edge channels also opens new experimental
opportunities to study quantum Hall physics by separately
addressing edge channels. Another interesting problem is
the physics of fractional quantum Hall states, especially in
combination with a nontrivial topology of surfaces and
edges obtained by drilling holes into a 3D topological
insulator.
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