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Critical properties of quantum Hall systems are affected by the presence of extra edge channels—those

that are present, in particular, at higher plateau transitions. We study this phenomenon for the case of the

spin quantum Hall transition. Using supersymmetry, we map the corresponding network model to a

classical loop model, whose boundary critical behavior was recently determined exactly. We verify

predictions of the exact solution by extensive numerical simulations.
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More than 50 years after its discovery, Anderson local-
ization [1] remains a vibrant research field. One central
research direction is the physics of Anderson transitions
(ATs) [2], including metal-insulator and quantum Hall
(QH) type transitions (that is, transitions between different
phases of topological insulators). Apart from electronic
gases in semiconductor structures, experimental realiza-
tions include localization of light [3], cold atoms [4], ultra-
sound [5], and optically driven atomic systems [6].
Theoretically, the field was strongly boosted by the dis-
covery of unconventional symmetry classes and a complete
symmetry classification of disordered systems [2,7–9].

Recently, it was realized that ATs in systems with bounda-
ries may exhibit boundary critical behavior different from,
and richer than, the bulk behavior [10–12]. The boundary
criticality has served to test conformal invariance at two-
dimensional ATs [13–15] and as a strong constraint on
possible theories of the integer QH transition [16]. These
works often employed the so-called network models [17,18]
of ATs for numerical studies. Within a network formulation,
the richness of boundary critical behaviors relates to the
possibility of having multiple edge channels at the boundary
[12,19,20]. Physically, multiple edge channels occur in an
integerQH systemwhenever the filling fraction exceeds one.
Some of the results below may directly apply to the physics
of higher QH plateaus and transitions between them.
However, our description neglects electron interactions at
the edgewhich could be relevant in experimental realizations
of the QH effect [21,22].

In this Letter, we study boundary critical properties in
the presence of multiple edge states at the so-called spin
quantum Hall (SQH) transition [23]. The corresponding
network model [23,24] enjoys a very special status. In the
bulk, or with reflecting boundaries, the model in its mini-
mal formulation (suitable to describe mean conductances)

can be mapped to classical percolation on a square lattice
[25,26]. This mapping determines exact critical properties
at the SQH transition [25–29]. In this Letter, we demon-
strate that extra edge channels can be straightforwardly
included in the mapping. The resulting classical model is
not percolation anymore but can nonetheless be formulated
as a loop model.
Both network and loopmodels (or percolation) are lattice

regularizations of field-theoretic descriptions of ATs in
terms of sigma models on symmetric superspaces
[2,8,30]. This connection is thoroughly explained in
Ref. [31] and was recently extensively explored by some
of us [32]. Through this connection, complete spectra of
boundary operators were obtained for the conformal sigma

models on superspacesCPNþM�1jN with a topological theta
angle [33]. In the sigma-model approach, the number of
extra edges is related to the exact value of the theta angle,
which affects boundary (but not bulk) properties [34]. The
caseN ¼ M ¼ 1 is directly relevant to the SQH effect, and
we here apply results of Ref. [33] to obtain exact exponents
describing the scaling of the mean boundary point contact
conductances in the presence of multiple edges.
We also report extensive numerical simulations of mean

conductances in network models on open strips with edge

channels on both sides. Conformal invariance (which has

been numerically demonstrated for this transition [14])

relates the exponential decay of the mean conductance

along the strip to dimensions of certain boundary opera-

tors. We extract these dimensions and compare them with

the predictions of Ref. [33].
The network model for the SQH effect with extra edge

channels is shown in Fig. 1. The bulk of width 2L contains
alternating up- and down-going columns of links. In addi-
tion,m (n) extra columns with the same chirality are added

PRL 108, 126801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

0031-9007=12=108(12)=126801(5) 126801-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.126801


at the left (right) edge. These extra links can be directed up
or down at either edge. We label the four possible variants
by ðL ¼ �m;R ¼ �nÞ; positive labels ðL;RÞ mean the
same direction of the edge links and the closest bulk link.
The links of the network carry doublets of complex fluxes
(labeled " and # ) whose scattering on links is described by
matrices uniformly distributed over the SU(2) group. The
scattering at the two types of bulk nodes (labeled S ¼ A or
B) is described by orthogonal matrices diagonal in spin
indices:

SS" ¼ SS# ¼
ð1� t2SÞ1=2 tS

�tS ð1� t2SÞ1=2
 !

; (1)

with tS the strength of the quantum tunneling. The SQH
transition occurs when tA ¼ tB. The boundary nodes where
the fluxes on the extra edge links scatter are described by
matrices of the form (1) but with two independent trans-
mission amplitudes, tL and tR, one for each edge of the
system.

We employ the supersymmetry method for network
models [25,35,36], with modifications due to the extra
edge links. The row-to-row transfer matrices X and Y
(formed by multiplying all node transfer matrices, TA or
TB for bulk nodes, TL and TR for boundary nodes, in a
given row) act in the tensor product of bosonic and fermi-
onic Fock spaces defined for each column of links. The
columns form sites (labeled i) of a one-dimensional quan-
tum system whose evolution in the vertical (imaginary time

t) direction is given by the operator U ¼ QLT
t ðXYÞ, where

LT is the number of A nodes (or B nodes) along the t
direction (see Fig. 1). With periodic boundary conditions in
the t direction, physical quantities, including conductance,
may be written as correlation functions, h. . .i � STr½. . .U�,
and the system is invariant under a global slð2j1Þ super-
symmetry [25].

Averaging over disorder independently on each link (we
denote such averages by overbars) projects the Fock
space of bosons and fermions onto the fundamental V
(dual-fundamental V?) three-dimensional irreducible

representation of slð2j1Þ on up links (down links) [25].
The average node transfer matrices �TS;i act in the tensor

products of superspins Vi � V?
iþ1 in the bulk and Vi � Viþ1

or V?
i � V?

iþ1 in the extra edge regions. Thus, we have four
types of supersymmetric spin chains:

ðm;nÞ: V�m � ðV � V?Þ�L � ðV?Þ�n; (2)

ðm;�nÞ: V�m � ðV � V?Þ�L � V�n; (3)

ð�m;nÞ: ðV?Þ�m � ðV � V?Þ�L � ðV?Þ�n; (4)

ð�m;�nÞ: ðV?Þ�m � ðV � V?Þ�L � V�n: (5)

All tensor products between neighboring sites of these
chains decompose into two slð2j1Þ irreducible representa-
tions. The averages �TA;B in the bulk and �TL;R at the

boundaries read

�T A;i ¼ ð1� t2AÞI þ t2AEi; A $ B; (6)

�T L;i ¼ ð1� t2LÞI þ t2LPi;iþ1; L $ R; (7)

where I is the identity, Ei projects onto the singlet in the
decomposition of Vi � V?

iþ1 (and V?
i � Viþ1), and Pi;iþ1 is

the graded permutation of states on sites i and iþ 1. The
chain (2) with m ¼ n corresponds to a sigma model with
topological angle � ¼ ð2nþ 1Þ� and to a transition be-
tween the nth and the ðnþ 1Þst plateau.
The decompositions (6) and (7) have a natural graphical

representation, shown schematically (without coefficients)
in Fig. 1 (right). At a bulk node, links can be separated into
disjoint lines in two ways, while, at a boundary node, the
lines can either avoid each other or cross. Multiplying the
transfer matrices to calculate the partition function, the
result is the sum of all contributions of dense closed loops
of weight one filling the links of the network, weighted by
factors of either t2S or ð1� t2SÞ for each node. In the bulk,

the loops are percolation hulls, and the loop model is
equivalent to bond percolation on a square lattice [25].
The presence of extra edges generalizes this nontrivially,
since loops can intersect at the boundary. In this situation,
all configurations of the loop model fall into disjoint
sectors [37] labeled by the number ‘þ 2k of through lines
extending throughout the system in the t direction, where
‘ ¼ jL�Rj is the minimal possible number of the
through lines for given L and R.
In the strip geometry, our model has external links at the

top and bottom, where we can insert or extract current.

In this geometry, the mean conductance �gL;R between the
top and bottom contacts is the average number of through
lines going from the source to the drain of the current,
times 2 for the spin. With the source at the bottom,
the minimal number of available through lines is

kL;R
min ¼ maxð0;L�RÞ, whence

FIG. 1 (color online). Left: Network model with a bulk region
of width 2L ¼ 4, and m ¼ n ¼ 2 extra channels at the left and
right boundaries. Right: Schematic representation of the decom-
position of average node transfer matrices. The two top rows
show bulk nodes—see (6)—while the two bottom ones are
boundary nodes—see (7).
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�gL;R ¼ 2kL;R
min þ 2

X1
k¼1

kPðk; LT=L; LT=�Þ; (8)

where Pðk; LT=L; LT=�Þ is the probability (symmetric inL
andR) that exactly 2k ‘‘paired’’ through lines run through
the system of size 2LT by 2Lþmþ n, and � is the bulk
correlation length. At the transition, � ¼ 1, and, for large

LT=L, we expect that Pðk; LT=L; 0Þ � e��hL;RðkÞLT=L.
Conformal invariance at the transition allows us to identify

the exponents hL;RðkÞ with dimensions of certain bound-
ary operators. In the literature on self-avoiding walks, such
exponents are called watermelon exponents and the
through lines are called legs. For LT=L � 1, the sum in
Eq. (8) for �g is dominated by k ¼ 1, and we denote the

exponent of the first subleading correction as �L;R:

�gL;R�2kL;R
min þC1e

��hL;Rð1ÞLT=LþC2e
���L;RLT=L: (9)

Critical properties of the above geometric loop model,

including the exponents hL;RðkÞ, can be extracted from the
anisotropic limit of the spin chains (2)–(5), obtained by
taking all tS � 1. In this limit, the evolution operator in
one unit of time becomes XY 	 expð�tAtBHÞ. For defi-
niteness, we focus on the case (2); the critical (tA ¼ tB)
Hamiltonian H is then

H ¼ �u
Xm�1

i¼0

Pi;iþ1 �
X2Lþm�2

i¼m

Ei � v
X2Lþmþn�2

i¼2Lþm�1

Pi;iþ1:

(10)

The interaction between the superspins in the bulk is anti-
ferromagnetic and uniform at the critical point.
Interactions between boundary spins are ferromagnetic
(compare with [36]), and their magnitudes u ¼ ðtL=tAÞ2
and v ¼ ðtR=tAÞ2 are kept as arbitrary positive numbers.
From the diagonalization of H, described in [33] along
with full details of the derivation of the results presented
below, we obtain the critical exponents hm;nðkÞ as scaling
limits of the lowest eigenvalues in a given sector. A more

detailed knowledge of �gL;R is needed for predicting �L;R

in Eq. (9) analytically [38], but, in most cases, we can

identify its numerical value as hL;Rð2Þ.
The exact expressions for hm;nðkÞ derived in [33]

appear in Table I. There, hr;s ¼ ½ð3r� 2sÞ2 � 1�=24, m¼
minðm;nÞ, and the parameter rk is given in terms of m, n,
and k for m 
 n (if m< n, exchange m and n) by

rk ¼ 6

�
arccos

� ffiffiffi
3

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1þ kÞðnþ 1� kÞ

ðmþ 1Þðnþ 1Þ

s �
: (11)

A few remarks are in order. The exponents are indepen-
dent of the boundary couplings u and v, implying a bound-
ary renormalization group flow to the stable fixed point
with infinite boundary couplings, similar to Ref. [39].
Moreover, since u and v are positive (ferromagnetic),
randomness in u and v does not change the exponents. If

the number of legs is ‘ or mþ nþ 2j, with j > 0, the
exponents equal those of critical percolation with, respec-
tively, 0 or 2j hulls through the system (in particular, this is
so when m ¼ 0 or n ¼ 0). However, when the number of
legs is between ‘þ 2 and mþ n, exponents are highly
nontrivial and, remarkably, they are irrational.

The exponents hL;RðkÞ are symmetric in L and R by
invariance of the spectrum under left-right reflection.
Further exponent relations follow from symmetries of the
critical spin chains (2)–(5). In each case, V � V? (and V? �
V) interacts through Ei, and V � V (and V? � V?) through
Pi, and the u and v can be set to one thanks to the
universality. Then, the top-bottom reflection switching V
and V? induces a mapping between the chains (sometimes
with different lengths of the bulk region): ðL;RÞ $
ð�L� 1;�R� 1Þ. This implies that

hL;RðkÞ ¼ h�L�1;�R�1ðkÞ: (12)

In particular, this relates pairwise exponents for the chains
(2) and (5), as well as for (3) and (4): h�m;�nðkÞ ¼
hm�1;n�1ðkÞ and h�m;nðkÞ ¼ hm�1;�n�1ðkÞ. When the total
number of legs in the model (5) equals mþ nþ 2j, with
j 
 0, the corresponding exponent hm�1;n�1ðkÞ ¼
h1;3þ2j ¼ ðjþ 1Þð2jþ 1Þ=3, since, in this case, we must

write the total number of legs as ðm� 1Þ þ ðn� 1Þ þ
2jþ 2.
Finally, consider the chain (3). Regarding the leftmost

site on the right boundary as part of the bulk and noting that
we have identical chiralities at the two boundaries (so that
‘ ¼ mþ n), the ðmþ nþ 2jÞ-leg exponents are simply
h1;2þ2j ¼ jð2jþ 1Þ=3, j ¼ 0; 1; . . . , independently of m

and n. Results for (4) easily follow from (12): the ðmþ
nþ 2jÞ-leg exponents are h1;2þ2j ¼ jð2jþ 1Þ=3 in both

models (3) and (4).
We now present extensive numerical simulations to

verify our analytical predictions for the exponents

hL;Rð1Þ, the independence on tL;R, the symmetry relation

(12), and to determine the subleading exponent �L;R. We
numerically calculate the conductance of critical SQH

TABLE I. The watermelon exponents. k is the number of
paired through lines on top of ‘ unpaired ones, and m ¼
minðm; nÞ. hr;s is the Kac table, and rk is defined as in

Eq. (11).

k #ðlegsÞ ¼ ‘þ 2k hm;nðkÞ
0 ‘ hr0 ;r0 ¼ 0
1 ‘þ 2 hr1;r1..
. ..

. ..
.

m nþm hrm;rm
mþ 1 nþmþ 2 h1;3 ¼ 1=3
..
. ..

. ..
.

mþ j nþmþ 2j h1;1þ2j ¼ jð2j� 1Þ=3
..
. ..

. ..
.
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networks with extra channels in the strip geometry with
length 2LT and width 2Lþmþ n. We parametrize the
transmission amplitude in Eq. (1) as tA ¼ sin� and tB ¼
cos�. In terms of �, the SQH transition occurs at � ¼ �c �
�=4. Similarly, we write tL;R ¼ sin�e, where �e can be

arbitrarily tuned or chosen randomly in ½0; �� indepen-
dently for each boundary node.

The transmission matrix t for the SQH network model in
the strip geometry is effectively calculated using the trans-
fer matrix method [18]; the conductance is given by the
Landauer formula g ¼ Trtty. Ideally, the exponents

hL;Rð1Þ and �L;R would be obtained by fitting the data
to Eq. (9). However, finite-size effects hamper such an
analysis in actual simulations unless �e ¼ �c or �e is
random. Therefore, we apply finite-size-scaling analysis
to systems of various widths [40]. We only simulate net-
works corresponding to chains (2), (4), and (5), with L �
R, so that kL;R

min ¼ 0. Table II summarizes our numerical

results and includes analytical predictions for comparison.
First, we focus on systems (2), with L ¼ 0 and R 
 0.

As shown in Table II, numerically obtained h0;Rð1Þ agrees
with analytical results and �0;R coincides with h0;Rð2Þ for
various R and �e. This suggests that the level-one de-

scendant of h0;Rð1Þ, h0;Rð1Þ þ 1 ¼ 4=3, does not contrib-
ute to the conductance in these systems. In addition,
h0;1ð1Þ ¼ 1=3 and �0;1 ¼ 2 are verified even for random
�e, confirming our expectation that randomness in the
boundary couplings is irrelevant.

Next, we consider the casesL;R> 0, where hL;Rð1Þ is
irrational. Since the L dependence is weak for �e ¼ �c and
random �e, we extract several h

m;nðkÞ for these �e without
finite-size-scaling analysis. We confirm that the numeri-
cally obtained exponents hm;nð1Þ and �m;n agree well with
the analytical hm;nð1Þ and hm;nð2Þ, respectively. Note that
there are no analytically predicted exponents with values
between hm;nð1Þ and hm;nð2Þ.

Furthermore, we study the cases L;R< 0, whose ex-

ponents hL;RðkÞ are related to those of systems with
L;R> 0 by Eq. (12). Comparing results for ð�m;�nÞ
and ðn� 1; m� 1Þ in Table II (and assuming the L $ R
symmetry), we see that Eq. (12) for k ¼ 1; 2 is verified
even if �e � �c. Finally, when L< 0 and R 
 0 in

Eq. (4), our numerics confirm hL;Rð1Þ ¼ 1 for various

cases. Results for the subleading exponent �L;R are pres-
ently inconclusive because of large numerical errors.

Our comprehensive numerical simulations confirm the
exact analytical predictions for the leading exponent

hL;Rð1Þ and, in most cases, allow us to identify the first

subleading exponent �L;R as hL;Rð2Þ.
In conclusion, we have considered the SQH transition

with extra edge channels. We have mapped the correspond-
ing network model to a classical loop model, whose bound-
ary critical exponents have recently been obtained exactly.
Using the mapping, we obtain exact critical exponents at
the SQH transition from the exponential decay of the mean

conductance in the strip geometry. Our extensive numeri-
cal simulations confirm the analytical results for the
boundary exponents. The demonstrated influence of extra
edge channels on boundary critical behavior should be
broadly applicable to other QH transitions.
The numerical simulations have been performed using

the PADS resource (NSF Grant No. OCI-0821678) and the
Teraport Cluster at the Computational Institute at the
University of Chicago. The work of J. L. J. and H. S. was
supported by a grant from the ANR Projet 2010 Blanc
SIMI 4: DIME. H.O. is supported by a Grant-in-Aid from
JSPS for Young Scientists. I. A. G. was supported by NSF
Grants No. DMR-0448820 and No. DMR-0213745. H. S.
thanks C. Candu, N. Read, and V. Schomerus for discus-
sions. H.O. thanks F. Evers for discussions.

TABLE II. Numerically obtained exponents hL;Rð1Þ and �L;R

and analytical predictions for hL;Rð1Þ and hL;Rð2Þ for various
values of ðL;RÞ. 1 means that the numerical exponents are
obtained by finite-size scaling [40]. ‘‘Rand’’ and ‘‘No’’ indicate
randomly distributed �e and no extra edge channels, respec-
tively. ‘‘� � �’’ means that numerical estimates of these subleading
exponents are unreliable.

L, R
Numerical simulations Analytical

2L �e hL;Rð1Þ �L;R hL;Rð1Þ hL;Rð2Þ
0, 0 1 No 0.3333(12) 2.06(63) 1=3 2

0, 1 1 �c 0.3330(7) 2.00(36) 1=3 2

0, 1 1 �=10 0.3341(31) 2.09(47) 1=3 2

0, 1 1 Rand 0.3332(10) 1.99(55) 1=3 2

0, 10 1 �c 0.3325(24) 1.81(55) 1=3 2

0, 10 1 �=10 0.3318(24) 2.03(43) 1=3 2

1, 1 1 �c 0.03775(25) 0.333(5) 0.037 720 1=3

1, 1 1 �=10 0.037 79(31) 0.319(13) 0.037 720 1=3

1, 1 1 Rand 0.037 73(45) 0.343(10) 0.037 720 1=3

2, 2 50 �c 0.016 00(2) 0.0737(6) 0.015 906 0.0732

3, 3 50 �c 0.008 80(1) 0.0396(2) 0.008 797 0.0377

4, 4 50 �c 0.005 62(1) 0.0255(1) 0.005 587 0.0233

1, 2 1 �c 0.0520(25) 0.334(43) 0.052 083 1=3

1, 2 1 �=10 0.0517(10) 0.307(16) 0.052 083 1=3

1, 2 50 Rand 0.052 21(3) 0.338(8) 0.052 083 1=3

1, 3 50 �c 0.059 86(3) 0.339(9) 0.059 697 1=3

1, 4 50 �c 0.064 25(3) 0.34(1) 0.064 421 1=3

2, 3 50 �c 0.024 49(10) 0.088(1) 0.024 348 0.0847

2, 3 1 �=10 0.024 76(42) 0.086(3) 0.024 348 0.0847

2, 4 50 �c 0.029 54(7) 0.095(1) 0.029 589 0.0920

�2, �2 1 �=3 0.0377(4) 0.339(10) 0.037 720 1=3

�2, �2 1 �=10 0.0372(8) 0.281(4) 0.037 720 1=3

�3, �3 1 �=3 0.016 11(9) 0.0749(7) 0.015 906 0.0732

�3, �3 1 �=10 0.0160(9) 0.0730(30) 0.015 906 0.0732

�3, �2 1 �=3 0.0522(2) 0.333(13) 0.052 083 1=3

�3, �2 1 �=10 0.0549(30) 0.336(13) 0.052 083 1=3

�1, 0 1 �c 0.999(9) � � � 1 10=3

�2, 0 1 �c 0.999(3) � � � 1 10=3

�2, 1 1 �c 0.998(3) � � � 1 10=3

�2, 2 1 �c 0.993(1) � � � 1 10=3
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