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We apply the density matrix renormalization group to study the phase diagram of the infinite U

Hubbard model on 2- to 6-leg ladders. Where the results are largely insensitive to the ladder width, we

consider the results representative of the 2D square lattice. We find a fully polarized ferromagnetic Fermi

liquid phase when n, the density of electrons per site, is in the range 1> n * 0:800. For n ¼ 3=4 we find

an unexpected insulating checkerboard phase with coexisting bond-density order with 4 sites per unit cell

and block-spin antiferromagnetic order with 8 sites per unit cell. For 3=4> n, all ladders with width >2

have unpolarized ground states.

DOI: 10.1103/PhysRevLett.108.126406 PACS numbers: 71.10.Fd

TheHubbardmodel is the paradigmatic representation of
strongly correlated electron systems [1]. It was introduced
to explain ferromagnetism in transition metals [2,3], and,
since then, has been studied as a model of antiferromagne-
tism, unconventional superconductivity, cold atoms in op-
tical lattices, and exotic fractionalized phases of quantum
matter. In the U ! 1 limit (in units in which the hopping
t ¼ 1) there are no parameters other than n, the electron
density per site. Despite the apparent simplicity of this limit,
relatively little is known about its phase diagram.
Nagaoka’s theorem [4] states that for a finite size system
with one doped hole away from half filling (n ¼ 1), the
ground state is fully spin polarized. However, it has been
controversial whether this state survives a finite range of
hole concentrations in the thermodynamic limit. Previous
exact diagonalization [5], Monte Carlo [6], and variational
[7–9] studies suggest that the fully polarized or ‘‘half me-
tallic ferrmagnetic’’ (HMF) state persists over a finite range
of densities, 1> n> nF with nF < 1. In contrast, other
lines of analysis [10–13] were suggestive that nF ! 1�.

In this Letter we report the results of an extensive
density matrix renormalization group (DMRG) study of
the zero temperature (T ¼ 0) phase diagram of the
Hubbard model in the U ! 1 limit, as a function of n,
the density of electrons per site. To begin with, we study
the 2-leg ladder on systems of size up to 2� 50 (typical
truncation error 10�8–10�13), large enough that finite size
scaling can be used to obtain clear convergence to the
thermodynamic limit. The resulting phase diagram is
shown in the lower panel of Fig. 1. To get a feeling for
which features of the 2-leg Hubbard ladder extrapolate
smoothly to 2D, we compute the properties of 4-leg and
6-leg ladders (with sizes up to 4� 20 and 6� 16, with
corresponding truncation errors �10�6 and 10�4, respec-
tively). The inferred partial phase diagrams of these wider

ladders are shown in the two middle panels of Fig. 1. (We
have also carried out limited additional studies of 3- and
5-leg ladders.) While there may be subtle correlations
characteristic of the 2D model that would only be manifest
were we able to study wider or longer ladders, many
features of the phase diagram are already remarkably in-
sensitive to ladder width and length for the studied system
sizes. We therefore speculate that these features survive as
ground-state phases of the fully 2D model, as shown in the
upper panel of Fig. 1.
We summarize our main findings. (1) For 1> n> nF,

we find a HMF phase, i.e., a fully spin-polarized
Fermi liquid. For all even leg ladders we have studied
nF ¼ 0:800, so we expect that in 2D, nF � 0:800 as
well, in agreement with recent variational studies [8].

FIG. 1 (color online). The phase diagrams of the infinite U
Hubbard model on the 2-, 4-, and 6-leg ladders, and the inferred
phase diagram in 2D.
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(2) For nF > n > 3=4, the 2-leg ladder appears to phase
separate (PS), with the two coexisting phases having den-
sities n ¼ nF and n ¼ 3=4. Our more limited results on
broader ladders suggest that the same holds true for 4-leg
ladders and, by extension, in 2D as well [14]. (3) For n ¼
3=4, the 2-leg ladder forms an insulating commensurate
plaquette density wave state, as shown schematically in
Fig. 2(a). This pattern of symmetry breaking suggests
that the spin degrees of freedom on ‘‘strong’’ 3=2-spin
plaquettes are coupled antiferromagnetically through
‘‘weak’’ bonds; indeed there is no detectable spin gap
and we find clear signatures of quasi-long-range antiferro-
magnetic order with twice the period of the plaquette order.
The 4-leg and 6-leg ladders exhibit a similar (slightly
weaker) ordering tendency, forming the checkerboard pla-
quette order of the sort shown in Figs. 2(b) and 2(c); given
the results on 2-, 4-, and 6-leg ladders we suggest that the
corresponding phase persists in the 2D limit. The 2D
checkerboard phase has coexisting bond-density wave
and block-spin antiferromagnetic order. However, the
site-charge density in this phase is uniform. The existence
of this phase, and its apparent robustness, was unantici-
pated in previous studies as far as we know . (4) For
n < 3=4, the ground state of the 2-leg ladder exhibits
ferromagnetic or paramagnetic phases depending on n.
However, the ground state is always paramagnetic for the
4- and 6-leg ladders, which indicates a paramagnetic
ground state in 2D.

DMRG applied to Hubbard ladders.—The Hubbard
model is defined, as usual, by

H ¼ �t
X

hiji;�¼";#
½cyi�cj� þ H:c:� þU

X

i

cyi"ci"c
y
i#ci#; (1)

where cyj� creates an electron with spin polarization � on

site j and hiji signifies pairs of nearest-neighbor sites. In
the limit U ! 1, the Hamiltonian is parameter free; the
second term in H is replaced by the nonholonomic con-

straint of no double occupancy,
P

�c
y
j�cj� ¼ 0, or 1, and

we take units of energy so that t ¼ 1.
The DMRG calculations were carried out keeping 4000–

18 000 states. All ladders were taken to have open bound-
ary conditions in both directions. When we compute the
expectation value of various densities, it is sometimes
useful to break spin rotational symmetry by applying a
Zeeman field of magnitude h ¼ 1 in the z direction on the
single site at the lower left-hand end of the ladder.
To characterize the excitation spectrum of the system,

we define the charge, spin, and single-particle gaps,�c,�s,
and �1p, as follows:

�c � ½EðNel þ 2Þ þ EðNel � 2Þ � 2EðNelÞ�=2
�s � ½EðS ¼ 1;NelÞ � EðS ¼ 0;NelÞ�;
�1p � ½EðNel þ 1Þ þ EðNel � 1Þ � 2EðNelÞ�;

(2)

where Nel is the total number of electrons (which is often
taken, for present purposes, to be even), and EðNelÞ and
EðS; NelÞ are, respectively, the ground-state energy and the
ground-state energy in a given spin sector. This definition
of the spin gap is only useful under circumstances in which
the ground state has S ¼ 0. Where possible, we have
extrapolated values of the gaps to the thermodynamic limit
by fitting the data from finite length ladders to a quadratic
form, �ðNÞ ¼ �þ AN�1 þ BN�2, where N is the length
of the ladders.
Results for the 2-leg ladder.—We have computed the

ground-state properties of the 2-leg ladder as a function of
n for system sizes 2� N with N ¼ 20, 30, 40, and 50. To
identify the ferromagnetic portions of the phase diagram,
we have computed the ground-state magnetization density
M ¼ S=Smax, where S is the total spin of the ground state,
and Smax ¼ Nn is the maximum possible value of S in a
fully spin-polarized state. The results are shown in
Fig. 3(a), where different curves denote the different sys-
tem sizes (see Supplemental Material [16] for part of the
raw data including error bar). Since the four curves are
nearly identical, the extrapolation to the thermodynamic
limit is trivial. Specifically, (1) The fully polarized ground
state terminates at n ¼ nF ¼ 4=5, independent of N [17]
(see Supplemental Material [16] for supporting raw data).
This value of nF is not locked by any obvious commensu-
rability effect that we have detected. For instance, if we
modify the Hamiltonian by making the hopping matrix
elements on the rungs t0 ¼ 0:5t, where t is the hopping
matrix element on the legs of the ladder, we find that nF ¼
0:85. However nF ¼ 4=5 is robust when t0 is increased, at
least up to t0 ¼ 2t. (2) The ground state at n ¼ 3=4 is an
insulating paramagnetic state with a charge gap, �c ¼
0:24� 0:02t, a single-particle gap, �1p ¼ 0:245� 0:02t,

but a vanishing spin gap �s < 3� 10�4t which is zero
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FIG. 2 (color online). Ground-state correlations at n ¼ 3=4 for
a central portion of (a) the 2� 20 ladder, (b) the 4� 20 ladder,
(c) the 6� 8 ladder. The thickness of the lines is proportional to
the third power of the magnitude of Bij, and the length of

the arrows to the magnitude of Sj, where the axis of

spin quantization is set by a Zeeman field of strength h ¼ 1
applied to the lower left-hand site of each ladder. The numbers
index the position along the ladder. For the 2� 20 ladder, the
values of Bij in the figure range from Bij ¼ 0:30 (lightest line) to

Bij ¼ 0:45 (darkest line), while the magnitude of Sj ranges from

�0:19 to 0.21. For the 4� 20 ladder Bij ranges from 0.30 to

0.41, while Sj ranges from �0:12 to 0.12. For the 6� 8 ladder

Bij ranges from Bij ¼ 0:31 to 0.41, while Sj ranges from �0:18

to 0.16. (We have obtained similar results for a 6� 16 ladder, but
even keeping 18 000 states, the convergence is not as complete as
for the smaller ladders.)
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within our uncertainty. (See Supplemental Material [16]
for raw data used for extrapolation.) The character of this
state on a central segment of the ladder is shown in
Fig. 2(a). The thickness of the lines on the bonds between
sites represents the magnitude of the expectation value of

the bond density, Bij �
P

�h½cyi�cj� þ H:c:�i and the

length of the arrow on the site represents the expectation

value of the spin on that site, Sj � 1
2

P
��hcyj�cj�i. A

Zeeman field of strength 1 has been applied to the first
site on the lower leg of the ladder; translation symmetry is
broken as well by the ends of the ladder. There is a period-2
bond-density wave, with a magnitude that does not de-
crease with distance from the end of the ladder, nor does it
depend significantly on the length of the ladder; this sig-
nifies a discrete, broken translation symmetry. There is also
a period-4 ordering tendency of the spin density, but with
an intensity which decays slowly with distance from the
end at which the Zeeman field is applied. This, and the
absence of a spin gap, signifies that there is quasi-long-
range antiferromagnetic order. The expectation value of the

electron density, nj �
P

�hcyj�cj;�i, is nearly uniform,

nj � n for all j except in the immediate vicinity of the

ends of the ladder. To summarize, at n ¼ 3=4 the system
forms a ‘‘plaquette density wave,’’ which can be visualized
as a checkerboard array of weakly coupled plaquettes, each
with three electrons in a state of total spin 3=2, and a weak,
antiferromagnetic exchange coupling between plaquettes.
As one would expect, the character of this state is not
sensitive to small changes in the Hamiltonian—for in-
stance, if we set the rung hopping t0 ¼ 0:5t or 2t, we find
no qualitative change in the insulating phase at n ¼ 3=4.
(3) When n is in the range 4=5> n> 3=4 the ground state
appears to be a 2-phase mixture of the fully polarized state
with n ¼ 4=5 and the checkerboard state with n ¼ 3=4.
The evidence for this is as follows: (a) as seen in Fig. 3(a),
the ground-state magnetization is (within expected finite

size corrections) a linear function of n in this range. (b) The
ground-state energy (not shown) is, to similar accuracy, a
linear function of n in this range, with a continuous first
derivative at n ¼ nF; this is precisely the behavior ex-
pected from a Maxwell construction for a two-phase re-
gion. (c) As a final test, we have applied an on-site
potential of magnitude � ¼ 0:3t to the leftmost 2� 20
lattice sites of a 2� 50 ladder with mean value of n ¼
0:77; as can be seen in Fig. 3(b), the resulting density
profile consists of a region with density nj � 4=5 on the

left portion, and nj � 3=4 on the right portion of the

ladder, with a sharp domain wall separating them. We
have also computed spin correlation function for direct
evidence. However, the expected two peaks are broadened
due to numerical uncertainty (see Supplemental Material
[16] for results). (4) Again from Fig. 3(a), it is apparent that
for 3=4> n> 3=5, there is a regime in which the
ground state is partially spin polarized, with maximal
spin polarization being attained at n ¼ 2=3, where
M � 0:5. The behavior of the 2-leg ladder in this regime
is interesting in its own right, but, in contrast to the
situation in other ranges of n, similar behavior is not
seen in wider ladders. (5) For 3=5> n, the ground state
hasM ¼ 0. Finite size scaling leads to the speculation that,
for n � 1=2, this is a Luttinger liquid (LL) phase with �c,
�s, and �1p all tending to 0 in the thermodynamic limit to

within our numerical uncertainty of �0:02t. (Clearly, in a
Fermi liquid (FL), all three gaps vanish in the thermody-
namic limit. In 1D, the FL is unstable in the presence of
any interactions, but there exists a stable gapless LL.)
(6) For n ¼ 1=2 there is a clearly identifiable charge gap,
�c � 0:1t. One can think of this as arising from a state in
which there is a single electron localized on each rung of
the ladder [18] so that the spin-degrees of freedom form an
effective spin-1=2 chain, and thus can be expected to
exhibit one of two possible phases—a gapless phase with
power law antiferromagnetic and dimerization correlations
or a long-range ordered dimerized phase with a spin gap. In
a forthcoming paper we find slowly decaying dimerization
and antiferromagnetic correlations, which are suggestive
of the undimerized phase.
Results for wider ladders and extension to 2D.—Wider

ladders provide necessary clues concerning the evolution
of the phase diagram as the 2D limit is approached.
However, with increasing width, it becomes more difficult
to obtain fully converged results from DMRG; thus, we use
increasingly shorter ladders as the width increases.
To study the evolution of the HMF phase, we have

computed nF, the largest value of n for which the ground
state is fully spin polarized, for a variety of ladders (see
Supplemental Material [16] for results). An even-odd ef-
fect is apparent. For the 3� N ladders nF ¼ 0:87, inde-
pendent ofN, while for 4� N (as for 2� N) nF ¼ 0:8. For
5- and 6-leg ladders, we were restricted to relatively small
N, but the trend continues, with nF slightly greater than 0.8
for the 5 leg and approximately equal to 0.8 for the 6 leg.

FIG. 3 (color online). (a) Magnetization, normalized to its
maximum possible value, of the 2-leg ladder as a function of
n. The four highly overlapping curves correspond, respectively,
to N ¼ 50, 40, 30, and 20. (b) Expectation value of the site
density, nj, in a 2� 50 ladder with average density n ¼ 0:77 and

a chemical potential of magnitude � ¼ 0:3t applied to the left-
most 2� 20 sites.
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Extrapolating either the even or the odd leg ladder results
to the 2D limit results in an estimate of nF � 0:8 as the
ladder width tends to infinity.

We exhibit in Figs. 2(b) and 2(c), respectively, the
ground-state correlations at n ¼ 3=4 of the longest acces-
sible 4- and 6-leg ladders. The analogous commensurate
checkerboard state we found in the 2-leg ladder is manifest
in these correlations, as well. Indeed, the magnitude of the
broken symmetry does not seem to decrease much with
increasing ladder width—see figure caption.

For the 4� 20 ladder with n ¼ 3=4, �c¼0:23�0:006t
and �s ¼ 0:008� 0:002t. For comparison, on the 2� 20
ladder, the charge gap is of comparable magnitude, �c ¼
0:286� 0:006t, but the spin gap is more than a factor of 20
smaller, �s < 0:0003t. The robustness of the charge gap
corroborates the existence of a commensurate insulating
checkerboard state. To the extent that we can think of the
low energy spin degrees of freedom as corresponding to a
spin 3=2 antiferromagnet defined on the checkerboard
lattice, all (4pþ 2)-leg and 4p-leg ladders correspond,
respectively, to (2pþ 1)-leg and 2p-leg spin 3=2
Heisenberg ladders, and accordingly are expected to be
gapless, or to exhibit a spin gap, albeit one which falls
exponentially with increasing n [19]. Together, these ob-
servations strongly support the conclusion that the checker-
board antiferromagnet is the ground-state phase in the 2D
limit.

For nF > n > 3=4, we have not yet carried out serious
calculations to test for phase separation. However, the
apparent existence of partial polarization and the robust-
ness of the plaquette phase at nF ¼ 3=4 suggests that, as
for the 2-leg ladder, phase separation is likely for the 4- and
6-leg ladders, and by extension, in the 2D limit.

Finally, we have found that the ground states of all the
4-leg ladders we have investigated have total spin � 2 for
3=4> n> 3=5 and total spin � 1 for 3=5> n, respec-
tively, corresponding to M � 0. In the near future we
also hope to study the apparent LL phase to determine
whether there is a well-defined strong coupling limit [20]
of the superconducting state that is known to arise at weak
coupling [21].

Conclusion.—Our extensive DMRG study of the
U ! 1 limit Hubbard model on the 2-, 4-, and 6-leg
ladders strongly indicates that in the 2D thermodynamic
limit the ground state is a fully spin polarized Fermi liquid
for a finite range 1< n< nF with nF � 0:8. Also unex-
pectedly, entrance into the paramagnetic phase for n > 3=4
is marked by a commensurate checkerboard phase at
n ¼ 3=4 of substantial robustness. While we have not yet
investigated the effects of nonzero t=U, we expect the

HMF to be stable so long as 1� �
ffiffiffiffiffiffiffiffiffi
t=U

p
> n> nF, where

� is a number of order 1 [22].
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