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We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state

and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the

nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic

terms, both contain the same features versus applied bias when charge fluctuation occurs in the

corresponding electronic resonances. However, we show that, while the conductance exhibits features

at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge

susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge

susceptibility in the same experiment will permit us to differentiate between different scattering processes

in quantum transport.
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Recent developments in modern techniques of micro-
scopic manipulation and nanotechnologies enable us to
build functional nanoscale systems, for example, elec-
tronic nanodevices or molecular motors [1–5]. In such
systems, classical equilibrium thermodynamics is not
suited to describe the quantization of the charge or heat
flow. The properties of such devices differ from their
equilibrium counterparts since nonequilibrium quantum
and nonlinear effects dominate. The concepts of conven-
tional statistical mechanics and linear-response theory for
these small systems need to be substituted with those of
nonequilibrium quantum statistical mechanics [6–8]. This
is the appropriate framework for dealing with nanoscale
systems driven out of equilibrium, especially when one
wants to design or control these systems as heat engines or
electromechanical devices.

Extending the concept of equilibrium statistical mechan-
ics (linear-response theory, response functions, and fluc-
tuation theorems) to the nonequilibrium (NE) conditions
has seen a recent growing interest [9–11]. It is known from
linear-response theory that there exists some relationship
between different response functions, like, for example, the
density-density, current-density, or current-current correla-
tion functions at equilibrium [12]. However, there is no
reason why these relationships should hold at NE.
Motivated by understanding these NE properties and their
use in practical nanoscale devices, we focus in this Letter
on a specific physical property: the electronic transport. In
particular, we consider the relationship between the elec-
trical conductance and the charge susceptibility in nano-
scale junctions. We provide a definition for the NE charge
susceptibility, which can be measured in experiments, and
examine in detail its relationship with the full nonlinear
dynamical conductance.

We show that the nonequilibrium charge susceptibility
and the dynamical conductance of such a system are
related to each other, although in a different manner than
at equilibrium. At finite bias, they both contain information
about the charge fluctuation (induced by the bias) in the
electronic resonances. However, the NE charge suscepti-
bility does not contain information about purely inelastic
scattering processes which do not involve charge fluctua-
tions. By measuring both the conductance and the NE
charge susceptibility in the same experiment, one can
identify the nature of scattering processes involved in
transport through nanoscale junctions.
We illustrate this property with numerical calculations

for a model of a single-molecule nanojunction in the
presence of electron-phonon coupling. Our results are
relevant for but not limited only to electron-phonon scat-
tering processes. Other examples could be electron-
plasmon, electron-electron, or electron-spin excitation
scattering events. In the following, we first briefly recall
the relationship between linear conductance and charge
susceptibility at equilibrium. Then, we derive the corre-
sponding relationship in the NE conditions and present
numerical calculations.
Equilibrium response functions.—Within the linear-

response theory of a system at equilibrium [12–14], the
current I is related to a frequency-dependent applied bias V
via the linear conductance g as Ið!Þ ¼ gð!ÞVð!Þ. The
linear conductance is a response function obtained from

the current-density correlation function gðtÞ ¼ ðie=@Þ�
h½ÎðtÞ; N̂ð0Þ�i�ðtÞ, where N̂ is the total occupancy operator

and Î is the current operator Î ¼ edN̂=dt. The linear con-
ductance g is directly related to the density-density corre-

lation function �cðtÞ ¼ �ih½N̂ðtÞ; N̂ð0Þ�i�ðtÞ by the

relation gð!Þ ¼ i! e2

@
�cð!Þ. �c is also known as the

PRL 108, 126401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

0031-9007=12=108(12)=126401(5) 126401-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.126401


charge susceptibility and represents the response function
of the charge density modifications �n due to variation of
the electrostatic potential �v: �n ¼ R

�c�v [15]. In the dc
limit, one gets a finite linear conductance gð! ! 0Þ when
the charge susceptibility goes as �cð!Þ ¼ fð!Þ=! with
fð0Þ � 0. At equilibrium, there is a clear and well-defined
relationship between the charge susceptibility and the lin-
ear conductance. However, there is no a priori reason why
such a relation should still hold at nonequilibrium when an
applied bias drives the system in a nonlinear regime.

Nonequilibrium charge susceptibility and transport.—
We consider a generic system consisting of a interacting
central region C, the scatterer of interest (e.g., a molecule
or a quantum dot), connected to two electrodes acting as
source and drain. The electrodes are noninteracting Fermi
seas at their own equilibrium, and there is no direct contact
between them.We use nonequilibriumGreen’s functions to
calculate the electric current and charge of the system in
NE conditions [16]. The system is under a finite, but not
small, applied bias and is assumed to have reached a
nonequilibrium steady state which can be described by
an effective (pseudo-)equilibrium steady-state density ma-
trix [8,17].

We define the nonequilibrium charge susceptibility �NE
c

in the steady state as the response (not necessarily linear)
for the modifications of the total electronic occupancy of
the central region �hnCi due to the changes in the applied
bias �V, i.e., changes in the cause that drives the system
out of equilibrium [18]:

�NE
c ðVÞ ¼ @hnNEC i

@V
: (1)

The total occupancy hnNEC i of the central region C is given

by the nonequilibrium lesser Green’s function as hnNEC i ¼
�i

R
d!Tr½G<ð!Þ�=2�, where the trace runs over the

electronic states in the region C.
We now examine in detail how �NE

c ðVÞ is related to the
dynamical conductance GðVÞ ¼ dI=dV. The current at the
left L interface between the central region C and the L lead
is given by the Meir-Wingreen expression [16]

IL ¼ ie

@

Z d!

2�
TrffLð!Þ½Gr

Cð!Þ �Ga
Cð!Þ��Lð!Þ

þG<
C ð!Þ�Lð!Þg; (2)

with �Lð!Þ=2 being the imaginary part of the L lead self-
energy and Gr;a;<

C being the retarded, advanced, and lesser

Green’s functions of the central region, respectively, and
the trace is taken over the electron states of the central
region.

By using the properties of a NE steady state, one in-
troduces a nonequilibrium distribution functional fNEC for

the central region as G<
C ð!Þ ¼ �fNEC ð!ÞðGr

C �Ga
CÞð!Þ

[19]. At equilibrium, fNEC is simply given by the conven-

tional Fermi distribution function. The dynamical conduc-
tance GðVÞ can be written as

GðVÞ ¼ ie

@

Z d!

2�
Trf½1� fLðfNEC Þ�1�@VG<

C�L

� @V½fLðfNEC Þ�1�G<
C�Lg; (3)

which shows a relation between the dynamical conduc-
tance and the derivative of the lesser Green’s function
versus the applied bias @VG

<. To show more clearly how
GðVÞ and �NE

c ðVÞ are related to each other, we consider the
following simpler system.
A model system.—The model consists of a single elec-

tron level in the region C, in the presence of some arbitrary
kind of interaction. For the moment, we consider the wide-
band limit where �Lð!Þ ¼ � and that all the potential drop
occurs at the left contact. Only the Fermi distribution fL of
the left lead depends explicitly on the bias V via the Fermi
level �L. Within these conditions, we find a relation be-
tween the dynamical conductance G and the nonequilib-
rium charge susceptibility �NE

c :

GðVÞ
�
e

@
�

��1 þ �NE
c ðVÞ ¼

Z
d!@V½fLACð!Þ�; (4)

where ACð!Þ ¼ ½Ga
Cð!Þ �Gr

Cð!Þ�=2�i.
For noninteracting systems, the spectral function AC is

independent of the bias; then, @VACð!Þ ¼ 0. By using the
definitions of G and �NE

c for symmetric contacts and the
corresponding nonequilibrium distribution function fNEC ¼
ð�LfL þ �RfRÞ=ð�L þ �RÞ ¼ ðfL þ fRÞ=2 [20], we find a

direct proportionality between G and �NE
c : GðVÞ ¼

e2

@
��NE

c ðVÞ=e [21]. Beyond the wideband approximation

(with symmetric contacts), we obtain the relation GðVÞ ¼
e2

@
�ð�LÞ�NE

c ðVÞ=e. Hence, the compatibility between the

equilibrium and NE approaches implies that
lim!!0i!�cð!Þ � ��NE

c ðVÞ (within the dc limit of linear
response).
For interacting systems, AC depends on V through the

interaction self-energy �intð!;VÞ. An analytical expres-
sion relating G and �NE

c is more difficult to obtain [22].
However, we show next, from numerical calculations be-
yond the wideband limit, that there is a clear relationship
between GðVÞ and �NE

c ðVÞ for a model of interaction self-
energy.
An application.—For this, we have to make a choice for

the interactions in the central region C. The NE charge
susceptibility has been briefly studied for a model of
electron-electron interaction in the Anderson impurity
model at nonequilibrium in [23]. In the following, we
consider a model electron-phonon interaction in the central
region C [24,25]. Considering such a model permits us to
get several different physical effects: the renormalization
of the electron level, but also all the phonon replicas (the
phonon sideband peaks). So, effectively, we are dealing
with a richer model of multielectronic resonances. Such a
model includes different inelastic scattering events: those
related to charge fluctuations in the electronic resonances
(resonant elastic and inelastic transmission) and those
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involving off-resonant inelastic scattering by tunneling
electrons. However, the relationship derived previously
for GðVÞ and �NE

c ðVÞ is independent of the nature of the
interaction (electron-phonon or electron-electron) in the
central region C.

In our model, the Hamiltonian for the region C is

HC ¼ "0d
ydþ!0a

yaþ �0ðay þ aÞdyd; (5)

where dy (d) creates (annihilates) an electron in the level
"0, which is coupled to the vibration mode of energy!0 via
the coupling constant �0. The central regionC is connected
to two (left and right) one-dimensional tight-binding
chains via the hopping integrals t0L and t0R. The corre-
sponding lead � ¼ L; R self-energy is �r

�ð!Þ ¼
t20�=��exp

ik�ð!Þ, with the dispersion relation ! ¼ "�þ
2�� cos½k�ð!Þ�. Here, the imaginary part �� ¼ �2Im�r

�

is energy-dependent and goes beyond the wideband limit,
unless �� is much larger than any other parameters. At
equilibrium, the whole system has a well-defined unique
Fermi level �eq. A finite bias V, applied across the junc-
tion, lifts the Fermi levels as �L;R ¼ �eq þ 	L;ReV. The
fraction of potential drop at the left contact is	L, and	R¼
	L�1 at the right contact [26], with �L ��R ¼ eV and
	L 2 ½0; 1�.

Finally, the electron-phonon interaction is treated at the
Hartree-Fock level (first-order diagrams in terms of the

interaction) and is incorporated as self-energies �HF;x
e-phð!Þ

in the nonequilibrium Green’s function (x represents the
different components: advanced, retarded, greater, and
lesser). Self-consistent calculations provide a partial re-
summation of the diagrams to all orders [24,25].

Within this model, we calculate the dynamical conduc-
tance GðVÞ from Eq. (2) and the NE charge susceptibility
�NE
c ðVÞ from Eq. (1) for different sets of parameters. We

consider symmetric (t0L ¼ t0R) and asymmetric (t0L �
t0R) coupling to the leads, different strengths of coupling
to the leads, symmetric and asymmetric potential drops at
the contacts, and different transport regimes (off-resonant
"0 � �eq, and resonant "0 ��eq). We restrict ourselves
here to the medium electron-phonon coupling (0:5<
�0=!0 < 1) regime which corresponds to realistic cou-
pling in organic molecules. The strong coupling regime
requires higher-order diagrams and more time-consuming
calculations [24,25].

Figure 1 shows the NE charge susceptibility �NE
c ðVÞ and

the dynamical conductance GðVÞ. We consider a symmet-
ric coupling to the leads (t0L ¼ t0R) and an asymmetric
potential drop (	L ¼ 1). On this scale, both the conduc-
tance and the NE charge susceptibility present peaks at an
applied bias corresponding to an electronic resonance: a
main resonance peak close to full polaron shift-
renormalized level ~"0 ¼ "0 � �2

0=!0 and phonon side-

band peaks around V � ~"0 þ n!0 [27]. In the NE condi-
tions, the charge fluctuates in these electronic resonances
whenever the bias window includes ~"0 þ n!0. Hence,

peaks are obtained in the charge susceptibility �NE
c ðVÞ

for these biases. The peaks correspond to elastic (V �
~"0) and inelastic (V � ~"0 þ n!0) resonant scattering pro-
cesses. For the noninteracting case—see Fig. 1(a)—there is
only one resonance at "0, and, as demonstrated, �NE

c andG
are related via �ð�LÞ beyond the wideband limit.
Figure 2 shows that the relationship between �NE

c and G
is robust against our model parameters. It holds for asym-
metric coupling to the leads (t0L � t0R) and different frac-
tions of potential drops at the contacts—see Fig. 2(d). It
holds for strong coupling to the leads t0� �!0 > �0—see
Fig. 2(c)—and beyond the wideband limit—see Fig. 2(b).
It also holds when the interaction is modeled only with the
Fock diagram—see Fig. 2(a). Therefore, the relationship
between �NE

c and G is not due to the fact that the Hartree
self-energy �H

e-ph is proportional to hnNEC i (hence,

@V�
H
e-ph / �NE

c ).

Note that, with potential drops at both contacts, �L and
�R support a fraction of the bias, and the relationship
between �NE

c and G includes terms in @VfR. However,
both quantities still present the same features versus ap-
plied bias—see Fig. 2(d).
On a smaller energy scale, the conductance also contains

physical information for biases around excitation energies
which goes beyond resonant transmission. Indeed, the
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FIG. 1 (color online). Nonequilibrium charge susceptibility
�NE
c (solid lines) and dynamical conductance G (dashed lines)

versus applied bias. (a) Noninteraction case, with "0 ¼ 0:5 and
�� ¼ 0:7. (b),(c) With interaction and for different transport
regimes (�� ¼ 2). From off-resonant to resonant: (b) "0 ¼ 0:7,
(c) "0 ¼ 0:5, and (d) "0 ¼ 0:15. �NE

c is rescaled by � ¼
��ð�eqÞ ¼ t20�=��. On this scale, both �NE

c and G present the

same spectral features: peaks associated with charge fluctuations
in the electronic resonances. Calculations are done for symmet-
ric coupling t0� ¼ 0:15 and asymmetric potential drops �L ¼
�eq þ eV and �R ¼ �eq. The other parameters are !0 ¼ 0:3,
�0 ¼ 0:21, and "� ¼ 0. The energy parameters are in eV, and G
is in units of G0 ¼ e2=h.
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conductance also varies at bias thresholds corresponding to
other inelastic scattering processes (for example, inelastic
electron tunneling). At the bias threshold V �!0, the
conductance increases in the off-resonant transport regime
(opening of new conduction channels) or decreases in the
resonant transport regime (electron-phonon backscatter-
ing). These effects are better seen in the inelastic electron
tunneling spectroscopy (IETS) as peaks or dips for the off-
resonance or resonant transport regime, respectively
[25,28]. The IETS is obtained from the second derivative
of the current versus applied bias d2I=dV2 ¼ dG=dV �
@VGðVÞ. In experiments, the IETS signal is usually given
as normalized by the conductance itself or by the current
itself. Figure 3 shows the IETS signal, as well as the
corresponding variation of the nonequilibrium charge sus-
ceptibility versus applied bias @V�

NE
c . One can clearly see

a peak feature at V �!0 in the IETS signal, while �NE
c is

virtually featureless at the corresponding bias for both the
off-resonant and resonant transport regimes. This means
that these inelastic tunneling electron-phonon scattering
processes (at V �!0) are not related to charge fluctua-
tions. Instead, the phonon population fluctuates because of
phonon emission induced by the tunneling electron. Note
that the tiny features pointed out by the arrows in Fig. 3
correspond to tiny peak features in both �NE

c and G. They
are related to charge fluctuations in the electron resonances
at V ¼ ~"0 �!0 (phonon emission by a hole).

Discussion.—We have hence shown that the nonequilib-
rium charge susceptibility and the dynamical conductance
are directly related to each other, although in a different
manner than for the equilibrium case. They both present

features (peaks) versus the applied bias whenever there are
charge fluctuations in the corresponding electronic reso-
nances of the nanojunction.
Therefore, we suggest that measuring both the conduc-

tance and the NE charge susceptibility simultaneously in
the same experiment is essential in quantum transport. It
permits one to identify the nature of the scattering pro-
cesses involved in the transport, i.e., processes involving
charge fluctuation or not. This result is very important for
the analysis of the transport properties in complex systems
such as large single-molecule junctions and does not in-
volve the presence of a third gate electrode. Although our
result is mostly relevant for electron-phonon scattering
processes, it is not limited only to these processes. The
measurement of the NE charge susceptibility could be
performed by measuring the potential drop around a
capacitor placed in series with the nanojunctions (Vcap ¼
ehnCi=Ccap). One can then obtain �NE

c ðVÞ in a similar way

as the dynamical conductance GðVÞ is obtained from the
current by using a lock-in setup.

*herve.ness@york.ac.uk
[1] M.A. Ratner and D. Ratner, Nanotechnology: A Gentle

Introduction to the Next Big Idea (Prentice-Hall,
Englewood Cliffs, NJ, 2002).

[2] M.A. Reed and T. Lee, Molecular Nanoelectronics
(American Scientific, Stevenson Ranch, CA, 2003).

[3] Introducing Molecular Electronics, Lecture Notes in
Physics Vol. 680, edited by G. Cuniberti, G. Fagas, and
K. Richter (Springer-Verlag, Heidelberg, 2005).

-1 -0.5 0 0.5 1 1.5 2

(eV - ε~
0
) / ω

0

0

0.5

1

(χ
c

NE
/e) / 2.1

G(V)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

(eV - ε~
0
) / ω

0

0

0.1

0.2
(χ

c

NE
/e) / 6

G(V)

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1
(χ

c

NE
/e) / 2.9

G(V)

-1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3(χ
c

NE
/e) / 2πΓ

G(V)
(a) (b)

(d)(c)

FIG. 2 (color online). Nonequilibrium charge susceptibility
�NE
c (solid lines) and dynamical conductance G (dashed lines)

versus V. Same parameters as in Fig. 1(c), except as otherwise
stated. (a) Far beyond the wideband approximation: �� ¼ 0:7.
(b) Interaction at the Fock level only. (c) Strong coupling to the
leads t0� ¼ 0:30 ¼ !0. (d) Asymmetric coupling to the leads
and potential drop, t0L ¼ 0:07, t0R ¼ 0:15, 	L ¼ t0R=ðt0L þ
t0RÞ ¼ 0:681 82, and "0 ¼ 0:70.

0 0.5 1 1.5 2 2.5 3

eV/ω
0

0

5

10

15

20

[e
V

-1
]

IETS/G(V)

(dχ
c

NE
/dV) / χ

c

NE

0 0.5 1 1.5 2 2.5 3

-0.1
-0.05

0 IETS
dχ

c

NE
/dV

(a)
(b)

(c)

FIG. 3 (color online). Derivative @V�
NE
c (dashed lines) and

IETS signal @VG (solid lines). @V�
NE
c does not have the peak

or dip feature of the IETS at V �!0. (Top) Resonant transport
regime. Calculations were done with t0� ¼ 1:50� ��, "0 ¼
0:0, and �0 ¼ 0:195. (Bottom) Off-resonant regime for different
"0. @V�

NE
c and @VG are normalized by �NE

c and G, respectively.
(a) "0 ¼ 0:70, (b) "0 ¼ 0:99, and (c) "0 ¼ 1:20. The arrows
point out the position of the electron resonance at V ¼ ~"0 �!0.
Calculations were done with the same parameters as in Fig. 1(b).

PRL 108, 126401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

126401-4



[4] M. Di Ventra, Electrical Transport in Nanoscale Systems
(Cambridge University Press, Cambridge, England, 2008).

[5] C. Joachim and L. Plevert, Nanosciences: The Invisible
Revolution (World Scientific, Singapore, 2009).

[6] J. A. McLennan, Phys. Rev. 115, 1405 (1959).
[7] D. N. Zubarev, Condens. Matter Phys. 4, 7 (1994) [http://

www.icmp.lviv.ua/journal/zbirnyk.04/index.html].
[8] S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993).
[9] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod.

Phys. 81, 1665 (2009).
[10] A. Shimizu and T. Yuge, J. Phys. Soc. Jpn. 79, 013002

(2010).
[11] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys.

83, 771 (2011).
[12] J. Rammer, Quantum Transport Theory (Perseus Books,

Reading, MA, 1998).
[13] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971).
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