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The calculation of transport profiles from experimental measurements belongs in the category of

inverse problems which are known to come with issues of ill-conditioning or singularity. A reformulation

of the calculation, the matricial approach, is proposed for periodically modulated experiments, within the

context of the standard advection-diffusion model where these issues are related to the vanishing of the

determinant of a 2� 2 matrix. This sheds light on the accuracy of calculations with transport codes, and

provides a path for a more precise assessment of the profiles and of the related uncertainty.
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Inverse problems, i.e., going from data to model parame-
ters, are ubiquitous in science and engineering. They are
known to come with issues of ill-conditioning or singular-
ity, which make difficult relating the accuracy of the com-
puted model parameters to the errors in the input data.
Inferring transport properties of magnetically confined
plasmas from perturbative experiments [1] belongs in this
category. This issue is crucial to both the theoretical under-
standing of transport processes and the practical control of
fusion plasmas. Classical reconstructions of transport co-
efficients rely on standard transport codes, which ignore
the possible ill-posedness of the problem by employing ad
hoc regularizations. To the best of our knowledge, so far
the only authors that took it into account were Andreev and
Kasyanova [2], who provided a detailed analysis of the
uncertainties present in the case of a localized impulsive
source. However, as shown later, experimentalists hap-
pened unwittingly to avoid ill-conditioning and singularity
by trying naturally to separate the domain where transport
is measured from that where sources are present.
Unfortunately, this separation is almost impossible for
measuring the transport of angular momentum, and only
partially possible for heat transport. It is therefore most
important to warn the users of transport codes, and to
benefit from an alternative safer approach. For the first
time this Letter proposes such an alternative. The corre-
sponding technique is elementary, quite general, and re-
quires much less numerical calculations than with transport
codes. It may be applied to any experiment aiming at the
calculation of transport coefficients, also in media other
than plasmas. Its only limitations are: (i) it works in
effectively one-dimensional geometries; (ii) applies to per-
turbative regimes, i.e., where relevant equations may be
linearized around unperturbed equilibria; (iii) the forcing
term causing the perturbation must be periodic in time.

The standard procedure for inferring transport coeffi-
cients is through solving the advection-diffusion for the
generic quantity �ðr; tÞ (which may stand for the perturba-
tion to particle density, temperature, momentum,. . .):

@t� ¼ �r � �ð�Þ þ S; � ¼ ��r� þ V�: (1)

In (1) �, V are functions taken out of a set of trial profiles
guessed a priori, usually simple analytical expressions
containing a certain number of free coefficients which
are given explicit values by minimizing under some norm
the gap between the experimental � profiles and the recon-
structed ones. The regularization built in this approach is
straightforward: it consists in choosing well-behaved trial
functions for �, V.
In this work we address the problem of solving Eq. (1) as

an inverse problem in the case of periodically modulated
perturbations. We present a simple algebraic method to
recover exact solutions; that is, �, V, may be exactly and
directly (not by means of iterative procedures) obtained
from the smoothed data without the recourse to any ad-
justable trial function and minimization procedure. We
identify under which conditions the problem is well- or
ill-posed, i.e., the solution (�, V) does sensitively depend
from the input data. We discuss how error bars in the raw
measurements are propagated to final estimates of (�, V).
This is a delicate issue when Eq. (1) is addressed as a least-
squares problem using smooth trial functions for (�, V): on
the one hand, they prevent any oscillation to blow up,
thereby constraining the apparent error bars to values
smaller than ought be. On the other hand the opposite limit
is also possible: if trial functions are chosen that cannot
match the true (�, V) profiles, the minimization procedure
necessarily converges towards just a local minimum that is
far away from the true global minimum. In this case, the
error on the final (�, V) values is larger than expected from
the raw data alone. Finally, we point out how data from
different experiments can be combined to reduce the ef-
fective margin of error and thus yield a more accurate final
estimate of (�, V).
We consider a case with cylindrical symmetry and a

purely sinusoidal forcing term. Calculations are easier
using complex notation, thus the temporal behavior is
factored out in the term expð�i!tÞ and Eq. (1) writes
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� i!� ¼ r�1@r½rð�@r� � V�Þ� þ S: (2)

After rearranging, integrating over the radial coordinates
and using the boundary condition �ðr ¼ 0Þ ¼ 0 we get

�@r� � V� ¼ �r�1
Z r

0
dz zði!� þ SÞ: (3)

The previous equation is reduced to an algebraic system of
two real equations by expressing the signal in terms of
amplitude and phase, � ¼ Aei�, and S ¼ Sr þ iSi:

M � Y ¼ � Y ¼ �
V

� �
;

M ¼ �A0 cos�þ A�0 sin� A cos�
�A0 sin�� A�0 cos� A sin�

� �
;

� ¼
1
r

R
r
0 dz zðSrðzÞ �!AðzÞ sin�ðzÞÞ

1
r

R
r
0 dz zðSiðzÞ þ!AðzÞ cos�ðzÞÞ

" #
(4)

where the primes stand for differentiation with respect to r.
Provided �ðrÞ is known, YðrÞ can be computed by invert-
ing the matrix MðrÞ. For this reason, in the following we
refer to this method as the matricial approach. It should be
mentioned that considering just time-periodic quantities in
(1) leads to a considerable simplification: this reduces
Eq. (1) from a partial differential equation to an ordinary
differential equation (2). Several efforts were devoted to
solving Eq. (2) using simpler techniques than its numerical
integration, possibly even analytical methods [3].

We now solve Eq. (4) for YðrÞ in terms of the eigenval-
ues �ðrÞ and eigenvectors EðrÞ of the matrix MðrÞ

Y ¼ y0E0þ y1E1; yj ¼ ��1
j � �Ej ðj¼ 0;1Þ: (5)

A solution exists wherever the matrix M is invertible, i.e.,
where none of the �j’s vanishes, which would imply

detðMÞ ¼ A2�0 ¼ 0: (6)

Excluding exceptional cases where A ¼ 0, the singular
points are those where �0 ¼ 0. The origin is one such
point, but there � ¼ 0, too; thus ultimately r ¼ 0 is a
regular point. Inspection of literature (see, e.g., [4–9])
shows instead that the condition �0 ¼ 0 is usually fulfilled
close to the location of the source. Qualitatively, this can be
justified by noticing that, close to the source, the dynamics
of � is ruled in Eq. (2) more by the source than by transport
if ! is large enough, hence � � iS!�1 and S0 ¼ 0 implies
�0 ¼ 0.

Physically, transport coefficients are defined even at the
singular points r ¼ rs. Throughout this work we conven-
tionally choose �0 to be the eigenvalue that vanishes at rs.
Accordingly, the actual value of � produced by the source
S must align the flux � exactly along the E1 eigenvector:

M � Y ¼ �1y1E1; � ¼ �1E1; ðr ¼ rsÞ (7)

Because of unavoidable uncertainties arising in the ex-
periment, the estimated � takes on a component along E0

too, thus making the inversion impossible. However, we
may solve for the component of Y along E1, whereas the
component along E0 remains completely unknown: YðrsÞ
belongs to a straight line parallel to E0 in the plane (�, V).
We present now a comprehensive discussion, including

both regular and singular points. We label with the sub-
script m the quantities measured by the experiment: Mm,
�m, �m. Equation (4) impliesMm � Ym ¼ �m. Let the sub-
script ‘‘c’’ label likewise the same quantities as estimated
by transport codes solving Eq. (1) via least squares. Finally,
let the asterisk label the ‘‘true’’ (unknown) quantities that
the experimental measure is addressing: M�, ��, ��, and
M� � Y� ¼ ��. Quantity �m generally contains some arbi-
trariness due to the lack of precise knowledge about the
source term, too. Let �� ¼ �c � �m, �M ¼ Mc �Mm,
��Y ¼ Yc � Y�. The target of any transport modeling is
��Y ¼ 0. Finally, we write �c¼��þ��Sþ��mþ��� .

In this expression ��S is the error in the calculation of the
flux due to the imperfect knowledge of the source, ��m is
the error related to imprecise measurement of � : �m � ��,
and the third term comes from the error in the reconstruc-
tion of the measured � : �� . For brevity, we set �� ¼ �� þ
��S þ��m, �c ¼ �� þ��� . Since (4) is a first integral

of (1), Mc � Yc ¼ �c holds. Using above definitions, we
rewrite the latter expression as

Mm � ��Y ¼ �� �Mm � Y� þ��� � �M � Y�
� �M � ��Y: (8)

Whenever �� ¼ �c � �m ¼ 0, then �M¼Mc�Mm¼0,
��m ¼ 0. Let again �0 be the smaller eigenvalue (in
absolute value). If �0 � 0 it is possible to check that (8)
can be fulfilled by setting �� ¼ 0: for regular points,
transport codes can potentially attain a perfect reconstruc-
tion of measured value, provided the set of trial profiles
includes the solution given by the matricial method.
This is no longer true when �0 ¼ 0, since in this case the

left-hand side of (8) is aligned along the other eigenvector
E1, whereas the right-hand side has generically compo-
nents along both directions. At a singular point a transport
code provides a natural regularization because of the lim-
ited flexibility of the set of Y profiles available for the
minimization. In terms of Eq. (8) the code generates the
minimum finite value of ��ðrsÞ over the set of trial profiles
providing a finite value of �M� ðrsÞ which cancels the E0

component of ��ðrsÞ, that exists for ��ðrsÞ ¼ 0. More
precisely the choice of all the ��ðrsÞ’s is done simulta-
neously, because of the global norm used by the codes.
Therefore this optimized finite value of ��ðrsÞ may not be
the smallest one. It is independent of �YðrsÞ if �M��ðrsÞ
is small. Therefore ��ðrsÞ does not measure the accuracy
of the calculation of YðrsÞ. Since �M��ðrsÞ has a random
sign, it does not improve this accuracy, even if it is not
negligible. Finally the finite value of ��ðrsÞ also modifies
the component of YðrsÞ along E1, which increases the
uncertainty of the calculation.
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Summarizing, the matricial approach: (i) highlights that
the source term plays a critical role for profile calculation;
the best situation is obtained when the source is localized at
the plasma outer edge: then, the inverse problem is well-
conditioned and the error on the source estimate does not
enter the calculation of the profile for smaller radii. The
worst case is conversely expected to be when the source is
spread radially. Then the calculated profile may be strongly
influenced by the somewhat arbitrary regularization.
(ii) Points out that the common strategy of least-squares
minimization performed by transport codes actually hides
some subtle practicalities.

So far, we have implicitly assumed that measurements
are performed on a very fine mesh of points, such that �
may be treated as a continuous variable. In real cases,
measurements are taken on a discrete and often quite
coarse mesh, r ¼ rj, j ¼ 1; . . . ; N. This raises issues of

interpolation and extrapolation, needed to compute the
derivatives and the integrals involved in Eq. (4), and em-
phasizes the intrinsic reverse character of our approach
with respect to transport codes solving Eq. (1): the matri-
cial approach computes Y only at the discrete set of
measurement points rj, but needs a continuous interpola-

tion of the data A and� in order to compute the derivatives
involved in Eq. (4). Conversely, transport codes do need
continuous profiles for (�, V) and only the knowledge of A,
� at discrete points. From Eq. (5) one can estimate the
uncertainty associated to the calculation of YðrÞ. Y de-
pends on 3� N experimental quantities fAig; f�ig; fSig.
We label collectively these quantities as #k; k ¼
1; . . . ; 3N. Let �#k be an estimate of the associated uncer-
tainty and @k � @

@#k
. Thus,

�Y ¼ X
k;l

�#k

�
� � El

�l

@kEl þEl

�
@k� �El

�l

þ � � @kEl

�l

� � �El

�2
l

@k�l

��
: (9)

Generally, the �#k’s should be treated as stochastic varia-
bles picked up from some statistical distribution.
Accordingly the vector �YðrjÞ spans an area W around

the point YðrjÞ: the uncertainty on this quantity is geomet-

rically displayed as a roughly elliptic region with low
eccentricity if �0=�1 � Oð1Þ. Near the points where �0

is small the term proportional to ��2
0 dominates:

�Y � �E0

� � E0

�2
0

X
k

d#kð@k�0Þ þ E1O
1

�0

� �
: (10)

Thus W is stretched along E0, as qualitatively assessed
earlier.

Till now we considered a single experimental setup
endowed with a single modulation frequency and source.
However, it is easy to generalize to experiments where—
under the same transport conditions—multiple harmonics
are measured, or the location of sources is changed. Then,

the above procedure may be repeated, and the independent
domains of uncertainty W compared. If for all points they
have a nonvanishing intersection, this should provide a
smaller global uncertainty, and thus improve the accuracy
of the profile calculation. If one of the intersections van-
ishes, the assumptions of the calculation must be ques-
tioned. In particular, one may wonder whether (i) the
uncertainties have been underestimated and whether the
correct W’s are larger than estimated; (ii) some source
terms have not been computed correctly or are missing;
(iii) it is not true that the independent measurements cor-
respond to the same ð�ðrÞ; VðrÞÞ profile; (iv) Eq. (1) fails:
transport is not of the advection-diffusion type. Whenever
the modulated source has several harmonic components,
by virtue of the linearity of Eq. (2), each harmonic can be
treated as a separate measurement. This may improve the
accuracy in the regions where �0 is not small. If �0 is small,
sinceE0 has almost the same orientation for all harmonics,
the precision of the calculation cannot be improved.
In order to make visual the above statements we propose

below a check using synthetic data. Spatial profiles of
transport coefficients and sources are given in advance
[Figs. 1(a) and 1(b)] and used in Eq. (2) to produce
synthetic (A, �) data sets [Figs. 1(c) and 1(d)]. Notice
that the central source S2 produces a singular point close
to half radius (i.e., near the location of its peak), whereas
the edge source S1 does not. The matricial method is
then employed on these data to check that the original
transport coefficients are correctly recovered back
[Figs. 1(e) and 1(f)]. Finally, we add a finite uncertainty
to the ‘‘measurements’’ in order to mimic experimental
error: to each point is added a random contribution taken
from a normal distribution with a mean amplitude equal to
1% (both in the amplitude and the phase). The new data
sets have been then smoothed using a moving average, in
order to avoid too brusque variations, that would deterio-
rate the quality of the derivatives, and were interpolated
using third-order splines. Then the coefficients (�, V) are
recomputed, repeating the whole procedure for a total of
400 independent statistical runs at x ¼ 0:41, i.e., close to
the singularity for the source S2. Figures 1(g) and 1(h)
show how the different estimates spread around the true
value. For the ‘‘regular’’ case S1 all the estimates have a
relatively small spread, unlike S2, whose data align along
the eigenvector E0, as predicted earlier, when �0 ! 0. The
width of the spread is remarkable, which stresses again the
ill-posed nature of the problem.
To summarize, the matricial approach (MA) is very light

computationally. Indeed, it avoids the heavy spatiotempo-
ral integration of Eqs. (1) and (2) and the iterative least-
squares minimization procedure over the set of trial func-
tions. The MA provides a clear geometrical foundation to
the nature and size of uncertainties in profile reconstruc-
tion. The reconstruction radius-by-radius enables to see
how different are the uncertainties over Y as a function
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of r and to correlate them with the presence of a source.
The MA yields a higher precision in the reconstruction of
transport profiles than transport codes, provided the uncer-
tainty on the estimate of the derivatives of A and � is not
high. Indeed, the MA is not restricted by the a priori guess
of the trial profiles, but by that of these derivatives, which
is much more reliable and controllable. It may provide an
assessment of profile predictions already done with trans-
port codes. A posteriori some regularization may be ap-
plied to MA results. When �0 is small at a given radius rs,
the regularization needed to provide a reasonable estimate
ofYðrsÞ can be defined in an explicit way, while this is only
implicit in the transport code approach. For instance, if a
singular point rs is in between two nearby regular ones ri
and riþ1, one may require YðrsÞ to be on the straight line
joining YðriÞ and Yðriþ1Þ. Overlapping the uncertainty

intervals for various experiments where the same transport
is assumed to hold, provides either a way to improve the
precision of the reconstruction (case of a nonvanishing
overlap) or to prove the set of initial assumptions in the
reconstruction to be wrong (case of a vanishing overlap).
The MA can help designing a priori the combination of
perturbation measurements susceptible of improving the
precision of the reconstruction of transport profiles. The
MA requires a single boundary condition only: the vanish-
ing flux at r ¼ 0, which is a rigorous constraint. In contrast
the calculation via Fokker-Planck equation of the �iðtÞ’s
requires a second outer boundary condition which is gen-
erally known with some uncertainty. Very often this con-
dition is provided by the data of the outermost chord. Then
the matricial approach has the benefit of keeping the out-
ermost chord data available for the profile calculation. It
also avoids the uncertainty included in this data to con-
taminate the profile calculation at smaller radii.
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FIG. 1 (color online). (a) Profiles of � and V. (b) Profiles of the
two sources, S1, S2. Both sources are modulated with frequency
� ¼ 1. (c) Amplitude A of the signal produced by solving
Eq. (2). Circles refer to source S1, diamonds to S2. (d) Phase
� of the same signal. (e) Symbols are the transport coefficients
computed backwards from Eq. (4), superimposed to the true
transport coefficients, for the simulation with source S1. (f) The
same for source S2. (g) Scatter of (�, V) from Monte Carlo
simulation using source S1 at x ¼ 0:41. The black segment is
parallel to the local eigenvector E0. (h) The same as figure (g) for
data from source S2.
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