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Turbulent transport of angular momentum is a necessary process to explain accretion in astrophysical

disks. Although the hydrodynamic stability of disklike flows has been tested in experiments, results are

contradictory and suggest either laminar or turbulent flow. Direct numerical simulations reported here

show that currently investigated laboratory flows are hydrodynamically unstable and become turbulent at

low Reynolds numbers. The underlying instabilities stem from the axial boundary conditions, affect the

flow globally, and enhance angular-momentum transport.
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Accretion in astrophysical disks requires the flow of
mass towards a central gravitating body. The ensuing loss
of momentum must be balanced by outward angular-
momentum transfer among gas particles [1]. If the motion
of orbiting gas was laminar, molecular transport would be
orders of magnitude too slow for accretion to take place,
and so considering a turbulent viscosity becomes necessary

[2]. However, in Keplerian disks the gas rotates as � /
r�3=2 and laminar motion is linearly stable according to the
Rayleigh criterion. Although axial magnetic fields can
drive turbulence via the magnetorotational instability [3],
it is not clear whether this operates in weakly ionized disks.
On the other hand, it is well known that linearly stable
shear flows (such as pipe flow) can become turbulent due to
finite amplitude disturbances. Whether Keplerian flows are
susceptible to such a transition scenario or remain stable
despite the large Reynolds numbers (Re) is a topic of great
interest and the source of much controversy [4].

The stability of disklike flows is typically probed in
laboratory experiments of fluid between two concentric
and independently rotating cylinders, Taylor-Couette flow
(TCF). In the infinite-cylinder idealization, the Navier-
Stokes equations admit a pure rotary solution
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commonly referred to as Couette flow. Here r1 and r2 are
the radii of the inner and outer cylinders and �1 and �2

their angular velocities. When ðr1=r2Þ2 <�2=�1 < 1 the
angular velocity decreases outward but the angular mo-
mentum increases (quasi-Keplerian flows). Accretion disks
are stratified in the axial direction and are thus best mod-
eled considering an unbounded domain, thereby avoiding
artificial boundary conditions [5]. Most experiments and
simulations focus, however, on the physics of the disk’s
midplane and neglect stratification. Under this assumption
simulations typically employ axially periodic boundary
conditions, whereas in experiments cylinders have a

finite-length h. Hence the degree to which (1) may be
approximated is compromised by the axial boundary con-
ditions and length-to-gap aspect ratio � ¼ h=ðr2 � r1Þ. In
particular, solid axial boundaries result in a basic state with
nonzero radial and axial velocity components (Ekman
flow). Hence, producing Couette-like profiles in experi-
ments poses an extraordinary challenge, which may be
addressed by considering very tall cylinders or splitting
the end walls in several rings that rotate at independent
angular speeds [6]. The latter strategy has been imple-
mented in the Princeton Taylor-Couette experiment [7],
which has a short aspect ratio � ¼ 2:104 but whose end
walls are split into two independently rotating rings. From
simultaneous laser Doppler velocity measurements of azi-
muthal and radial velocity components, Ji et al. [8] suggest
that quasi-Keplerian flows at Re ¼ Oð106Þ are essentially
laminar. From this, they conclude that purely hydrody-
namic mechanisms cannot transport angular momentum
at the rates required for accretion to occur in disks.
This conclusion has been recently challenged in a new

experimental study by Paoletti and Lathrop [9], who report
from direct torque measurements at the inner cylinder that
Keplerian flows at Re * 106 are fully turbulent. When
extrapolated to astrophysical disks, their results indicate
that transport occurs at accretion relevant rates, in agree-
ment with previous estimations [10]. Despite having tall
cylinders � ¼ 11:47, the Maryland experiment has solid
end walls that are attached to the outer cylinder and hence
cannot be rotated independently. Although these boundary
conditions are known to generate vigorous Ekman vortices
and greatly increase the exerted torque, their contribution
is discarded by dividing the inner cylinder into three sec-
tions and measuring torque only in the central one. Despite
efforts in the Princeton and Maryland experimental setups
to mitigate end wall effects, it is, however, unclear whether
their results can be used to infer the stability of flows in
astrophysical disks [4]. In this Letter it is shown that
current laboratory experiments of quasi-Keplerian
flows become turbulent already at Re ¼ Oð103Þ due to
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hydrodynamic instabilities stemming from the axial
boundary conditions. Moreover, it is found that turbulence
fills the entire flow domain and as a result the momentum
transfer is globally enhanced.

Here direct numerical simulations of flows with the
precise geometry and boundary conditions of the
Princeton and Maryland experiments were performed.
The Navier-Stokes equations for an incompressible
Newtonian fluid of velocity v,

@tvþ ðv � rÞv ¼ �rpþ�v; r � v ¼ 0; (2)

were rendered dimensionless by scaling lengths and time
with the gap width d ¼ r2 � r1 and viscous time d2=�,
where � is the kinematic viscosity of the fluid. The solution
of (2) was formulated in primitive variables in cylindrical
coordinates (r; �; z) and a second-order time-splitting
method with consistent boundary conditions for the pres-
sure was used [11]. The spatial discretization consists of
Chebyshev collocation in (r; z) and a Galerkin-Fourier
expansion in �. The code converges spectrally in the three
directions [12] and was validated against a Legendre-
Fourier-Galerkin code [13]. Here the resolution was
chosen to ensure that computed torque values were accu-
rate to at least 1%.

The geometry of the Taylor-Couette system is specified
by the radii ratio � ¼ r1=r2 and the length-to-gap aspect
ratio �. The dimensionless boundary conditions at the
cylinders read ðvr; v�; vzÞ½r1;2; �; z� ¼ ð0;Re1;2; 0Þ, where
Re1 ¼ dr1�1=� (Re2 ¼ dr2�2=�) is the inner (outer)
cylinder Reynolds number. Because of differential rotation
the angular velocity changes abruptly at adjacent rotating
boundaries. In the Princeton experiment, the end wall is
split at midradius rm ¼ ðr1 þ r2Þ=2 into two independently
rotating rings. Hence, there are four independent angular
speeds:�1 and�2 for inner and outer cylinder and�3 and
�4 for inner and outer rings. To preserve spectral conver-
gence discontinuities in angular velocity were regularized,
yielding the following boundary condition at the end walls
z ¼ ��=2:

�ðrÞ ¼ ð�1 ��3Þ exp½�ðr� r1Þ=��
þ ð�2 ��4Þ exp½�ðr2 � rÞ=�� þ�3 þ�4

2

þ�4 ��3

2
tanh½ðr� rmÞ=��;

with � 2 ½5� 10�3; 10�2� (see Ref. [14]). The boundary
condition modeling the Princeton experiment [8] is shown
as circles in Fig. 1(a). Because of the sharp gradient
@�=@rjrm and the clustering of Chebyshev points

close to the boundaries, a large number of radial points
(nr ¼ 351) was required to accurately simulate the
split end wall. In the axial and azimuthal directions up to
nz ¼ 281 Chebyshev points and n� ¼ 256 Fourier modes
were used. The Maryland experiment has a single solid
ring attached to the outer cylinder (�4 ¼ �3 ¼ �2) and

there is only a strong gradient at r1 [see crosses in
Fig. 1(a)]. Here up to nz ¼ 601, n� ¼ 384, and nr ¼ 61
were used.
To put TCF in the wider context of rotating shear flows it

is useful to define a shear Reynolds number Re ¼ 2=ð1þ
�ÞjRe2�� Re1j and a rotation number R� ¼ ð1� �Þ�
ðRe1 þ Re2Þ=ðRe2�� Re1Þ, which measure the ratio of
shear to viscous forces and the ratio of mean rotation to
shear [15], respectively. Here the sign of R� distinguishes
between cyclonic (R� > 0) and anticyclonic flows
(R� < 0), with �2< R� <�1 corresponding to quasi-
Keplerian rotation. In the experiments of Ji et al. [8], R� ¼
�1:038 and � ¼ 0:3478, and the same values were
used here, whereas Lathrop and Paoletti [9] have system-
atically studied both cyclonic and anticyclonic regimes at
� ¼ 0:7245. Here, � ¼ 0:7245 and the value R� ¼
�1:047 was chosen [corresponding to their Rossby num-
ber Ro ¼ Re1=ð�Re2Þ � 1 ¼ 0:85].
The end wall influence in the Maryland experiment is

illustrated in Fig. 1(b), showing the velocity field of the
steady basic state at Re ¼ 320. At the end walls there is a
strong negative radial velocity inflow, which generates
axial velocities pointing towards midheight along the inner
cylinder and result in an axially dependent azimuthal
velocity. Figure 1(c) shows the basic state of the
Princeton experiment at Re ¼ 772. Because of the small
aspect ratio the meridional circulation generates a strong
radial outward flow at midheight that increases the outward
transport of azimuthal velocity. Were the angular speeds of
the end wall rings selected according to the ideal Couette

FIG. 1 (color online). (a) Angular velocity at the end walls for
the Princeton (circles) and Maryland (crosses) experiments, and
Couette flow (dashed lines). (b),(c) Steady basic states at Re ¼
320 (Maryland) and Re ¼ 772 (Princeton). White (black) cor-
responds to maximum (minimum) velocity and the radial direc-
tion is horizontal with left (right) corresponding to inner (outer)
cylinder.
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profile [6,16] instead of the values used in experiments [8]
and reproduced here, profiles with weaker meridional cir-
culation and hence closer to Couette flow could be ob-
tained. This approach was used in previous numerical
simulations of the Princeton configuration [17].

The visualizations of Figs. 1(b) and 1(c) hint at the
difficulty of realizing quasi-Keplerian profiles in a labora-
tory experiment even at very low Reynolds numbers. The
end wall boundary conditions change the velocity field not
just locally but globally across the domain. In fact, at
slightly higher Reynolds numbers the flow becomes three
dimensional and time dependent via supercritical Hopf
bifurcations. In the Maryland configuration instability oc-
curs first at Rec ¼ 352 to prograde rotating waves with
azimuthal wave number m ¼ 5 and localized at the end
walls. Beyond Rec multiplicity of states, with different
symmetries and wave number m 2 ½2; 5�, was found,
whereas for Re * 1330 only a global m ¼ 2 mode re-
mained stable and was obtained regardless of initial con-
ditions [see Fig. 2(a)]. Further increasing the Reynolds
number led to modulated waves and a quick transition to
temporal chaos at about Re ’ 1600. Subsequently, spatial
periodicity was lost and the spectra broadened as the flow
became gradually turbulent; Fig. 2(b) shows a flow snap-
shot at Re ¼ 5328. This transition picture is also represen-
tative of the simulations of the Princeton experiment. Here
the basic steady state becomes unstable at Re ¼ 1448
almost simultaneously to m ¼ 1 and m ¼ 2 rotating
waves, which were found to coexist in space and time
[see Fig. 2(c)]. By no means is this situation generic:
changing the relative rotation of the cylinders one of
m ¼ 1; 2 was found to bifurcate first. Further increasing
the Reynolds number led to very complex and strongly
three-dimensional flow as shown in Fig. 2(d).

The stability of quasi-Keplerian TCF with end walls
attached to the outer cylinder and � ¼ 0:7245 is shown
in Fig. 3(a). The minimum critical Reynolds number is

attained at the Rayleigh line (R� ¼ �1) and increases as
differential rotation decreases, but with Rec < 104 across
the whole quasi-Keplerian regime. Close to the Rayleigh
line modes localized to the end walls bifurcate first,
whereas for R� & �1:1 global instability modes [as in
Fig. 2(a)] dominate. The former are similar to those ob-
served experimentally in Ref. [18] and the latter are similar
to those reported by Avila et al. [12], who studied global
boundary layer effects on flows between exactly corotating
cylinders and stationary end walls. Figure 3(b) further
shows that end wall instabilities depend weakly on geome-
try and hence generically govern the dynamics of quasi-
Keplerian TCF. It is worth noting that end wall instabilities
persist beyond the Rayleigh line and coexist with Taylor
vortices close to the onset of centrifugal instability.
The onset of hydrodynamic instability and transition to

turbulence are expected to radically change the radial
transport of azimuthal momentum. The solid lines in
Fig. 4(a) show normalized average azimuthal velocity
profiles hv�i�;t=ðr1�1Þ at midheight for simulations of

the Maryland experiment at Re ¼ 5328 (black solid line)
and the Princeton experiment at Re ¼ 6437 [gray (orange)
solid line]. At the inner cylinder the profiles are steeper
than laminar Couette flow (dashed lines), implying larger
torques on the cylinder surface. It is worth noting that in
TCF between infinite cylinders the transverse current of
azimuthal motion J� ¼ r3½hvr�i�;z;t � �@rh�i�;z;t� is a

conserved quantity [19], and as a consequence the dimen-
sionless torqueG ¼ ��2J� is the same at the inner and the
outer cylinder. This does not hold, however, for flows
confined by no-slip axial boundaries. Torque profiles along
the inner cylinder, normalized with the laminar Couette
torque, are shown in Fig. 4(b). Because of the sharp change
in � occurring across a small gap between the inner
cylinder and end walls [see Fig. 1(a)], the torque required
to rotate the inner cylinder faster than the end wall is very
large. This increase in local torque as the end walls 2z=� ¼
�1 are approached can be seen in Fig. 4(b). Although the
direct contribution of the end wall is largely avoided by the
measurement technique in the experiments, the torque in

FIG. 2 (color online). Three-dimensional view of isosurfaces
of negative [dark gray (red)] and positive [light gray (yellow)]
radial velocity. (a) m ¼ 2 rotating wave at Re ¼ 1332 and
(b) turbulent flow at Re ¼ 5328 from simulations of the
Maryland experiment. (c) Modulated rotating wave with
m ¼ 1 and m ¼ 2 at Re ¼ 1545 and (d) turbulent flow at
Re ¼ 6437 from simulations of the Princeton experiment.

FIG. 3 (color online). Stability curves of quasi-Keplerian
Taylor-Couette flows with end walls attached to the outer cylin-
der: (a) � ¼ 0:7245 and � as in the legend, (b) R� ¼ �1:1 and
� as in the legend.
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the central section remains well above laminar because of
turbulent fluctuations.

The simulations of the Maryland experiment show a
clear change in the torque behavior at about Re ¼ 3000
[see black curve in Fig. 4(c)]. This is related to the appear-
ance of the two torque peaks at 2z=���0:5 in Fig. 4(b)
and is caused by the onset of small-scale vortices which
have opposite spiral orientation to the structure of the
primary rotating wave [see Fig. 2(b)]. In both experiments
the torque has already doubled the laminar value at
Re� 6000 due to the end-wall-driven instabilities.

In spite of the disparity in Reynolds numbers, it is tempt-
ing to compare these numerical results to experimental
observations. van Gils et al. [20] have measured torque at
Re> 105 and have observed an effective universal scaling
law Nu ¼ G=Glam ¼ aðR�ÞRe0:76 that holds throughout
the linearly unstable regime of TCF. Surprisingly, Paoletti
and Lathrop [9] (see also Ref. [21]) have demonstrated
that this law applies to linearly stable cyclonic and anti-
cyclonic Rayleigh-stable regimes as well, that is including
quasi-Keplerian rotation. It is then natural to ask how this
universal behavior connects to the complex flows uncov-
ered in this work. It is speculated here that a transition
between end-wall-driven turbulence to the universal
Nu / Re0:76 scaling reported in experiments may take place
at intermediate Re. Interestingly, in the case of a stationary

outer cylinder a crossover marking the transition from
centrifugally to shear-driven turbulence at Re ’ 13 000
was reported [22]. If an analogous crossover was found in
quasi-Keplerian flows and shown to be independent of
aspect ratio and end wall boundary condition, a strong
case for the existence of hydrodynamic turbulence in as-
trophysical disks would be made. In fact, ingredients of
shear-driven turbulence such as transient growth of distur-
bances are found also in quasi-Keplerian flows, although
significantly only atRe ¼ Oð106Þ [23]. On the other hand, it
would be interesting to investigate the connection between
the complex flows found here and the quiescent flows
reported by Ji et al. [8] at large Re.
In conclusion, current laboratory experiments designed

to approximate flow profiles expected from accretion disks
become turbulent at moderate Reynolds number due to
imposed boundary conditions. Although these instabilities
are generic and hence cannot possibly be avoided, univer-
sal scaling suggests that shear mechanisms might over-
whelm end wall effects at large Reynolds number. In order
to probe this hypothesis new experiments with variable
aspect ratio and different axial boundary conditions should
be conducted. These would provide great insight on the
physical mechanisms of rotating shear flows and might
shed light on the origin of turbulence in astrophysical
disks.
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