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We study a class of acoustic metamaterials formed by layers of perforated plates and producing

negative refraction and backward propagation of sound. A slab of such material is shown to act as a

perfect acoustic lens, yielding images with subwavelength resolution over large distances. Our study

constitutes a nontrivial extension of similar concepts from optics to acoustics, capable of sustaining

negative refraction over extended angular ranges, with potential application to enhanced imaging for

medical and detection purposes, acoustofluidics, and sonochemistry.

DOI: 10.1103/PhysRevLett.108.124301 PACS numbers: 43.35.+d, 42.79.Dj, 81.05.Xj

Optical negative refraction is a counterintuitive phe-
nomenon that consists in bending light the wrong way
at the interface between suitably engineered materials.
Homogeneous substances with refraction indices of oppo-
site signs provide an ideal combination on which this effect
can take place. Over four decades ago, Veselago [1] real-
ized that a material with simultaneous negative magnetic
permeability and electric permittivity must have negative
index and, therefore, can produce negative refraction.
Subsequently, Pendry [2] showed that a slab of such ma-
terial can amplify evanescent fields, from which a perfect
lens can be constructed, capable of yielding images with
deep subwavelength resolution. These concepts have been
realized in artificial metamaterials, textured on a small
scale compared to the wavelength and displaying homoge-
neous resonant electric and magnetic response [3,4].

Inspired by these exotic optical phenomena, the quest
for acoustic superlensing and negative refraction started
with the prediction of negative index of refraction in
materials exhibiting negative effective mass density and
negative bulk modulus at the operating frequency [5]. In
this context, several acoustic metamaterial designs have
been proposed containing resonators in the form of coated
metallic spheres [6], lumped elements [7], or perforations
[8]. However, isotropic acoustic negative-index materials
have not been experimentally realized to date, despite a
long tradition of sound control using resonant linear de-
vices [9,10], including applications to diffraction-limited
imaging [11]. An alternative approach to acoustic negative
refraction and lensing is suggested by electromagnetic
metamaterials relying on anisotropy [12].

In this Letter, we show that a holey anisotropic
metamaterial can exert subwavelength control over sound
waves beyond what is achieved with naturally occurring
materials. We predict that, for appropriate choices of geo-
metrical parameters, these metamaterials support negative
refraction, backward-wave propagation along a direction
opposite with respect to the acoustic energy flow, and
subwavelength imaging with both the source and the

image situated many wavelengths away from the material.
Acoustic subwavelength control can be advantageous for
(bio)medical ultrasonography and diagnostic imaging [13],
acoustofluidic steering of microparticles and microorgan-
isms [14], and sonochemistry enhanced by sound focusing
[15,16].
We consider a bulk metamaterial design consisting of a

stack of perforated plates made of an acoustically hard
material (e.g., steel), separated by a sound-supporting fluid
(e.g., air), as shown in Fig. 1(a), where all geometrical
parameters are clearly defined. The elementary constituent
is a 2D rigid hole array, the transmission properties of
which have received considerable attention in connection
to novel phenomena such as shielding of sound near the
onset of diffraction [17], Fabry-Pérot resonances [18,19],
and acoustoelastic resonances [20]. The pressure field c
fully describes sound propagation in the fluid. We assume
the holes to be small compared to both the sound wave-
length � and the lattice parameters, and we disregard
elastic interactions in the hard screens. Under these con-
ditions, it is safe to retain only the monopolar component
of the field c scat scattered by each hole in response to an
incident pressure field c 0. We can write

c scatðrÞ � �c 0

eik0r

r
; (1)

where � is the scattering coefficient, k0 ¼ 2�=� is the
sound wave vector, and the radial distance r is referred
to the center of the aperture. Actually, we need to define
scattering coefficients both for the near-side (reflection, �)
and the far-side (transmission, �0) scattering components
of the hole. Inside the metamaterial, the incident field
(from the hole point of view) originates in the scattered
fields of the rest of the holes. In this way, one can write a set
of self-consistent equations, which take a particularly sim-
ple form when the periodicity of the hole arrays is taken
into consideration, so that we focus on a specific in-plane
dependence of the pressure fields determined from Bloch’s
theorem via a parallel wave vector kk: For holes facing a
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given fluid-filled interstitial gap region i, their incident
pressure can then be written as �i expðikk �RjÞ, where
Rj are the in-plane position vectors of the hole-lattice

sites j. In fact, the incident pressure can be different on
the upper (�i) and lower (�0

i) sides of each gap i. Putting
these elements together, we derive the self-consistent
equations

�0
i ¼ �ðG0�i þG�0

iÞ þ �0ðG0�0
i�1 þG�i�1Þ;

�i�1 ¼ �0ðG0�i þG�0
iÞ þ �ðG0�0

i�1 þG�i�1Þ;
where G and G0 are lattice sums extended over the holes of
an interstitial region, together with their successive mirror

images at the surrounding plate planar boundaries. More
precisely,

G ¼ X

j

X1

n¼�1

exp½ik0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
j þ 4n2ðdz � tÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
j þ 4n2ðdz � tÞ2

q eikk�Rj ;

and G0 takes a similar form with 4n2 substituted by
ð2nþ 1Þ2. (Here, we need to eliminate from G the term
with Rj ¼ 0 and n ¼ 0, if it occurs.) A detailed deri-

vation of these self-consistent relations is given in the
Supplemental Material [21], in which we also provide
comprehensive discussions on the numerical procedure
followed to calculate the lattice sums.
The propagating modes of the metamaterial are deter-

mined by the condition �i ¼ e�ikzdz�i�1, where kz is the
wave vector along the perpendicular z direction. After
some algebra, we find [21]

e�ikzdz ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
; (2)

where

� ¼ 1

ðg� � gþÞG0 ½ðG� gþÞðG� g�Þ �G02�:

Now, in the absence of any losses, energy conserva-
tion for a single hole (incident energy ¼ transmissionþ
scattering) leads to the condition Imfg�g ¼ �k0, where
g� ¼ 1=ð�� �0Þ [21]. Also, the lattice sums satisfy
ImfGg ¼ �k0 and ImfG0g ¼ 0 [21]. From these expres-
sions, we conclude that � is real, and wave propagation is
possible under the condition j�j � 1 with

kz ¼ ð�1=dzÞcos�1�: (3)

The� sign in Eq. (3) is resolved by the physical condition
Imfkzg> 0, which guarantees nondivergent solutions eikzz

for propagation towards increasing z (i.e., the direction of
energy propagation). Then, backward-wave propagation
occurs when Refkzg< 0 (i.e., the direction of energy
propagation and the wave vector are opposite), which
upon inspection of Eq. (2) is possible only if Imf�g> 0.
In practical terms, we calculate the scattering coefficients
� and �0 analytically within the narrow-hole limit [21],
and we add a small dissipation to these coefficients in order
to determine the sign of Imf�g.
At this point, it is convenient to note that the group

velocity vg ¼ rk! describes the direction and speed of

energy propagation inside the material. vg is normal to the

equifrequency surfaces in wave-vector space, k ¼ kk þ
kzẑ. Since we have kz expressed in terms of kk and the

frequency ! through Eq. (3), instead of ! in terms of kk
and kz, we need to recast rk! into the equivalent expres-
sion vg ¼ ð@kz=@!Þ�1ð�rkkkz þ ẑÞ. For kk ¼ kkx̂ along

a high-symmetry direction x̂ of the planar hole arrays,
we find rkkkz ¼ ð@kz=@kkÞx̂. It is also convenient to

FIG. 1 (color online). (a) Schematic representation of an
acoustic metamaterial consisting of stacked hard plates perfo-
rated by a periodic hole array. For simplicity, we consider a
square array of period dx and holes of diameter D. The plates of
thickness t are separated by a distance dz � t (i.e., the period of
the stack is dz). The holes and the interstitial regions between the
plates are filled with a sound-supporting medium in which the
sound wavelength is �. Perfect reflection of sound at the plate
hard material is assumed. (b) Dependence of the refraction angle
�ref and group refraction index ng on incidence angle �inc for

dz=dx ¼ 2:55, t=dx ¼ 1:9, D=dx ¼ 0:6, and �=dx ¼ 1:95 (this
corresponds to 175 kHz in air for dx ¼ 1 mm). The inset shows
equifrequency curves both in the homogeneous interstitial me-
dium (circle of radius k0 ¼ 2�=�) and in the metamaterial
(hyperbolic dispersion curves) as a function of wave-vector
components parallel and perpendicular to the plates, kk and kz,
respectively.
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define the group index of refraction ng from Snell’s law,

which yields

ng ¼ � ðkk=k0Þ
@kz=@kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@kz=@kkÞ2

q
: (4)

The value of kk is determined by the direction of the

incident wave vector in the near side of the metamaterial.
However, the group velocity inside the metamaterial can
be directed along either the same (positive refraction) or
the opposite direction (negative refraction), depending on
whether the sign of @kz=@kk is negative or positive, re-

spectively. Thus, positive (negative) refraction corresponds
to Refngg> 0 (Refngg< 0), according to Eq. (4).

Next, we show that these holey metamaterials exhibit
broad-angle negative refraction, unlike fishnet electromag-
netic metamaterials, which operate within narrow angular
ranges [4]. The proposed metamaterials do not rely on
diffraction to achieve negative refraction, in contrast to
phononic crystals [22]. The inset in Fig. 1(b) shows equi-
frequency curves for the wave vector of propagating
modes in air (circle) and in a representative metamaterial
(red curves) with a hole spacing of 1 mm, operating at a
frequency of 175 kHz (see the caption for additional pa-
rameters). The incident wave vector (radial in air) is shown
for an angle of incidence �inc ¼ 42�. Transmission across
the interface must preserve the parallel wave vector, and
this determines the transmitted direction inside the meta-
material. Now, the group velocity is normal to the equifre-
quency contours and oriented towards the direction of
increasing frequency [dotted equifrequency curves are
shown in the inset in Fig. 1(b) for a frequency slightly
above 175 kHz]. In our example, the propagation direction
is oriented to the right in air (blue arrow) and towards the
left once inside the metamaterial (red arrow), thus indicat-
ing that negative refraction occurs at this interface. We
confirm this behavior by numerically calculating the re-
fraction angle �ref displayed by a refracted Gaussian
beam (see Fig. 2), in full agreement with Snell’s law
[ sin�inc ¼ ng sin�ref ; see Eq. (4)]. The main part of

Fig. 1(b) shows both the refraction angle (left scale) and
the group index of refraction (right scale) as a function of
incidence angle, demonstrating a broad angular range over
which negative refraction takes place. From the above
construction, this is clearly a consequence of the hyper-
bolic dispersion shown in the inset.

We now focus on the refraction of a Gaussian beam
passing through a metamaterial slab. The beam is con-
structed as a sum of �103 plane-wave components.
Specifically, we investigate the spatial evolution of the
field as it traverses the interfaces between air and the
metamaterial for the same geometrical parameters as in
Fig. 1 but truncating the crystal to 250 layers. We apply a
closed-form expression for the transmission and reflection
coefficients [21], resulting from a recursion that allows us
to propagate kk-dependent waves between successive

layers. Figure 2 shows the resulting simulations for inci-
dence with an angle of 42� on the left surface of the slab.
We observe negative refraction at a frequency of 175 kHz
[Fig. 2(a); the power transmittance is 70%], associated
with forward waves on both sides of the interface
[Fig. 2(b)] and originating in the hyperbolic dispersion
noted above [Fig. 1(b), inset]. In contrast, positive refrac-
tion occurs at 95 kHz [Fig. 2(c)], accompanied by a back-
ward wave in the metamaterial [Fig. 2(d)].
Given the broad degree of control over refraction and

propagation of airborne sound displayed by these holey
structures, we next explore the possibility of using a meta-
material slab as a lens. Imaging of subwavelength sources
has been proposed with devices such as endoscopes [8],
negative-refraction perfect lenses [2], and slabs supporting
slow modes [23]. Subwavelength imaging relies on the
reconstruction of tiny details of the object via amplification
of evanescent waves. Metamaterial slabs can be engineered
to precisely do that, as we show in Fig. 3 for a metamaterial
operating at a frequency of 62 kHz, which is capable of
imaging a point source located � 30� away from the
metamaterial lens. The slab is made up of 50 layers.
First, we observe a tight focus inside the slab close to the
near-side interface. But more importantly, at a distance of
� 18� away from the far side of the lens (i.e.,� 0:6 times
the slab thickness), an image spot is observed with a lateral
FWHM 5 times smaller than the wavelength (see the inset).
This confirms the capability of holey metamaterials to
operate as lenses with subdiffraction-limit resolution for
relatively large distances between the source or image
and the lens. Interestingly, the spectral dependence of the
FWHM of the image spot [Fig. 3(b)] shows a dip near a

FIG. 2 (color online). Pressure-field simulations for a finite
metamaterial containing 250 layers with the same geometrical
parameters as in Fig. 1. (a) Negative refraction for a Gaussian
beam incident with angle �inc ¼ 42� from the left with wave-
length � ¼ 1:95dx (175 kHz in air for dx ¼ 1 mm.). Broken
lines indicate the slab interfaces. (b),(c) Phase (b) and group (c)
front propagation are both along the incidence direction in this
case. (d) The same as (a) for � ¼ 3:56dx (95 kHz in air for dx ¼
1 mm.), giving rise to positive refraction. (e),(f) Backward-wave
propagation is observed at this new wavelength.
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frequency of 62 kHz, for which evanescent waves have
large transmittance [Fig. 3(a)]; this further emphasizes
the role of evanescent waves as carriers of subwavelength
details for the reconstruction of a tight image spot. High
transmission in the present case occurs due to nonresonant
coupling to guided modes of the metamaterial. Finally, it
should be noted that this lens is robust against absorption
for a realistic choice of materials [21].

In conclusion, we have demonstrated that holey an-
isotropic metamaterials produce a vast range of unusual
behavior, encompassing negative refraction and backward-
wave propagation. In particular, negative refraction is
achieved over a broad range of incidence angles. We
have also explored the focusing properties of metamaterial
slabs, which can produce subdiffraction-limited imaging at
distances of several wavelengths from the slab boundaries.
In a practical application, the image spot could be scanned
over the interior of a sampled body and an image con-
structed out of the resulting scattering signal (e.g., for
medical imaging). Our illustrative calculations are made
for ultrasound frequencies in ranges of operation that
are common in ultrasonography and general biomedical

applications, for which these metamaterials provide a
versatile fabric.
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FIG. 3 (color online). Evidence of sound focusing in the calculated pressure-field distribution for an anisotropic metamaterial slab.
(a) Frequency and parallel wave-vector dependence of the transmittance through a metamaterial slab consisting of 50 steel plates
immersed in air with parameters t=dx ¼ 2:5, dz=dx ¼ 3:5, D=dx ¼ 0:6, and dx ¼ 1 mm. The transmittance is defined as the squared
amplitude of the far-side zero-order wave upon irradiation with a wave of unit amplitude at the near-side interface. (b) Focal length
from the far side of the slab to the image (right) and FWHM of the image spot (left) as a function of sound frequency. The source is
placed at a distance from the slab equal to the slab thicknessW in all cases. (c) Near-field intensity distribution showing the image at a
distance �0:6 W from the far side of the slab for a frequency of 62 kHz, which corresponds to �=dx ¼ 5:52. The inset illustrates the
transversal intensity profiles around the source (a pointlike monopole) and the image (FWHM � 0:2�).
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