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Dicke superradiance has been observed in many systems and is based on constructive interferences

between many scattered waves. The counterpart of this enhanced dynamics, subradiance, is a destructive

interference effect leading to the partial trapping of light in the system. In contrast to the robust

superradiance, subradiant states are fragile, and spurious decoherence phenomena hitherto obstructed

the observation of such metastable states. We show that a dilute cloud of cold atoms is an ideal system to

look for subradiance in free space and study various mechanisms to control this subradiance.
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Interferences between scattered waves by many particles
can give rise to a large variety of phenomena, including
collective effects such as Bragg or Mie scattering, well
known in the context of classical optics [1]. More intrigu-
ing situations can arise in the mesoscopic regime, where
interferences are at the origin of coherent backscattering
and Anderson localization [2]. Several mechanisms allow-
ing us to increase the time an optical excitation can stay in
a system are known to exist and are based on different
physical phenomena [3,4]. Multiple scattering of light or
radiation trapping, for instance, allows for increased
photon trapping in the absence of interferences [5].
Anderson localization is another possibility, where
interferences form localized states with exponentially
decreasing coupling to the environment and a dense sample
fulfilling the Ioffe-Regel criterion [6] is assumed to be
required. Another fundamental mechanism leading to
‘‘long-lived’’ subradiant modes of excitation is based on
the pioneering work by Dicke, who studied collective
decay rates in small and large samples [7]. Dicke states
have been considered for an assembly of N two-level
systems, realized, e.g., by atoms [8] or quantum dots [9].
In contrast to an initially fully inverted system with N
photons stored by N atoms, we will focus on states with
at most one single excitation [10,11]. These systems have
attracted increasing attention in the context of quantum
information science [12–14], where the accessible Hilbert
space can be restricted to single excitations by using, e.g.,
the Rydberg blockade [15–18].

In this Letter, we will show how it is possible to under-
stand and control the coupling of light into metastable
subradiant states, illustrating that large dilute clouds of
cold atoms are an ideal system to observe for the first
time long photon storage in a system of N atoms in free
space. Subradiance for two ions has been observed in the
past [19], and a reduced decay rate into one radiation mode
has been achieved forN atoms [20]. However, it has not yet
been possible to control and suppress the decay into all
vacuum modes for N atoms in free space extending thus

the lifetime of the excitation to many times the natural
lifetime of a single atom. Starting from the ansatz used in
previous work by several authors [11,21–24], we show that
the exponential kernel of the dipole-dipole coupling yields
an important fraction of atoms to be coupled into
subradiant modes. Following Ref. [25], we study different
inhomogeneous broadening mechanisms, which allow us
to go beyond the fundamental Fano coupling by controlled
coupling between super- and subradiant states. We will
specifically focus on Doppler broadening and inhomo-
geneous light shifts, even though alternative methods could
be used as well, as, for instance, an additional detuned
speckle field or near field coupling for denser atomic
clouds. The experimental parameters allowing us to control
subradiance in the system we consider are (i) the optical
thickness of the cloud, (ii) the temperature of the cloud,
and (iii) the driving laser intensity. Moreover, we show
how to distinguish subradiance from incoherent multiple
scattering of light by tuning the driving laser frequency.
We consider a Gaussian cloud, with root mean square

size �, of N two-level atoms (positions ri, transition wave-
length � ¼ 2�=k, excited state lifetime 1=�), excited by an
incident laser (Rabi frequency �0, detuning �0, wave
vector k0). We define the optical thickness bð�0Þ ¼
b0=½1þ 4ð�0=�Þ2� with b0 ¼ 3N=ðk�Þ2 its resonant
value. Restricting the atomic Hilbert space to the subspace
spanned by the ground state of the atoms jGi � jg � � �gi
and the single excited states jii � jg � � � ei � � � gi and
tracing over the photon degrees of freedom, one obtains
an effective Hamiltonian describing the time evolution of
the atomic wave function jc i ¼ �jGi þP

i�ijii. The
effective Hamiltonian using standard approximations
[24,26] can then be written as
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where the first term describes the coupling to the laser field,
the second accounts for the finite lifetime of the excited
states, the third one describes the dipole-dipole inter-

actions, with Vij ¼ expikjri�rjj
kjri�rjj , and Si� and Siz are the usual

pseudospin operators for the kets jgii and jeii, respectively.
The effective Hamiltonian (1) describes dipole-dipole
couplings in the scalar light approximation, where near
field and polarization effects are neglected since we are
considering dilute clouds: Nð�=�Þ3 � 1. At low intensity
(where the single excitation approximation is valid), � ’ 1
and the previous model describes a system of N classical
dipoles driven by an incident electric field as expected by
linear optics [27]. We use these classical equations to study
single photon subradiance. The driven steady state solution
jc i ’ jGi þ �jTDi bears the phenomenon of single

photon superradiance with a ‘‘timed Dicke’’ state jTDi ¼
ð1= ffiffiffiffi

N
p ÞPie

ik0ri jii and an amplitude � ’ ffiffiffiffi
N

p
�0=½2�0 þ

ið1þ b0=12Þ�� [24]. This was, e.g., exploited to explain
the measured cooperative radiation pressure force in dilute
clouds [23].

In order to study enhanced storage time based on Dicke
subradiance, we will investigate the coupling between
‘‘short-lived’’ superradiant states, such as jTDi, and the
other states j’i of the single excitation Hilbert subspace.
Let us first consider the minimal coupling, based on radia-
tive dipole-dipole coupling. As the effective Hamiltonian
Eq. (1) is non-Hermitian, its eigenstates are nonorthogonal
(h’superj’subi � 0), and subradiant states thus have com-

mon features with autoionizing states or Fano resonances
[28]. This Fano-type coupling between long-lived sub-
radiant states and short-lived superradiant states leads to
additional decay channels in addition to direct decay of the
subradiant states to the ground state. This situation is
reminiscent of the Hanle effect [29], where a competition
of direct decay and transverse coupling can lead to surpris-
ingly narrow resonances. For instance, the steady state
solution of optical Bloch equations for a system consisting
of the ground state jGi, one superradiant j’superi, and a

single subradiant state j’subi reveals that in the absence of
Fano coupling the steady state solution of the subradiant
state is zero. Neglecting the direct decay of the subradiant
state to the ground state, on the other hand, one finds that,
for resonant excitation and small coupling between the
excited states, after a long transient time all atoms are
pumped into the subradiant state j’subi. The optical
Bloch equations of such a simplified three-level model
show that, by increasing in a controlled manner the cou-
pling between super- and subradiant states, it should be
possible to efficiently store populations into long-lived
subradiant modes.

In Fig. 1, we show the normalized excited state popula-
tion / P

ij�ij2 as computed from numerical solution of the
effective Hamiltonian Eq. (1) in the linear regime. As
precise initial conditions play a crucial role in the sub-
sequent fast and slow decay [27], we start initially with all

atoms in the ground state jGi and keep the coherent laser
drive for 50��1 before switching it off, realizing thus
experimentally accessible conditions. The fast initial decay
of the superradiant state �super ¼ ð1þ b0=12Þ� is clearly

seen. Moreover, after this initial fast decay, subradiance
manifests itself in a slowly decaying excited population
with a rate well below the single atom decay rate. At first,
the subradiant decay is not purely exponential, since
several modes decay simultaneously. For longer times, it
then ends up with a pure exponential decay (referred as
subradiant decay in the following) when only one
long-lived mode dominates. The emission diagram of the
superradiant timed Dicke state jTDi is clearly forward
directed (see Fig. 1), a phenomenon reminiscent of Mie
scattering. On the other hand, subradiant modes show
isotropic diagrams. They do not possess the symmetry of
the laser excitation since they are not directly coupled to it,
a feature which can be exploited in the experimental
detection of subradiance.
In Fig. 2, the subradiant decay rates (due to Fano coup-

ling) are plotted as a function of the inverse on-resonance
optical thickness of the system. The difference to multiple
scattering of light, which can also yield long photon
trapping times, can be understood by looking at the decay
rates for different excitation frequencies. As shown in the
inset in Fig. 2, close to resonance we observe reduced
decay rates, which we associate to the large optical
thickness for resonant photons [5]. For larger detunings,
however, the decay rate becomes independent of the
excitation frequency, consistent with the subradiant nature
of states weakly excited off-resonance.

FIG. 1 (color online). Time evolution of the normalized
excited state population (black solid curve) after switching off
the laser for N ¼ 2000 atoms, k� ¼ 10, and �0 ¼ 10� (the
laser was on before during 50��1 to let the system reach the
steady state). At first, the population decreases faster than
the single atom decay (black dashed line) and then slower.
We, respectively, identify these phenomena as super- and
subradiance. The inset shows the emission diagrams of the
superradiant timed Dicke state jTDi (blue) and subradiant modes
(red) averaged over 8 realizations (rescaled to allow convenient
comparison).
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The fundamental Fano coupling between sub- and
superradiant states in the Dicke basis can be understood
from the diagonal terms in the bare bases jii. Indeed, the
local field at the ith atom is the sum of the external field E0

and the field scattered by all the other dipoles j at the
location of the atom i:

EtotðriÞ ¼ E0ðriÞ þ
X
j�i

EjðriÞ ’ E0ðriÞð1þ "ie
i’iÞ: (2)

We describe the scattered field by a small local speckle

field with a random amplitude scaling as "i /
ffiffiffiffiffiffiffiffiffiffiffiffi
bð�0Þ

p � 1
and a random phase ’i. The amplitudes �i depend on
the local field and differ from the driven timed Dicke
amplitudes. The dipole i is thus driven with a random field
corresponding to an inhomogeneous broadening mecha-
nism [25], where we now have inhomogeneity in amplitude
and phase. An estimation of the expected lifetimes of the
long-lived subradiant modes is also an important issue. We
have checked numerically that they scale as

�sub � 1

b0
; (3)

for b0 > 1 (see Fig. 2). This scaling is close to what can be
obtained by assuming that in the limit of large detuning�0,
where multiple scattering inside the sample can be
neglected, the escape rate of the excitation from the sample
is well approximated by the inverse of the long-lived mode
lifetime, which scales as 1=b0 [30]. This can also be
compared to scaling laws obtained from quantum chaotic
scattering theory [31]: For large b0 [corresponding to a
large number of atoms N compared to the number of
outgoing modes M� ðk�Þ2], the minimum width of the
resonance is expected to scale as �sub �M=N � 1=b0.

We now turn to the possibility of controlled coupling
between super- and subradiant states, opened by cold
atoms. In atomic physics, many different inhomogeneous
broadening mechanisms are known. We will focus on two
such mechanisms, well adapted to become a control knob
to steer excitations into the subradiant state. Let us thus
consider the impact of residual motion of the atoms. The
effective Hamiltonian (1) can be extended to include
Doppler shifts and time-dependent positions of the atoms.
The coupled equations for the dipole amplitudes �i read in
the linear regime

_�i¼
�
��

2
þ ið�0�k0 �viÞ

�
�i� i�0

2
þ i�

2

X
j�i

Vij�j; (4)

where VijðtÞ ¼ eikjri�rjþðvi�vjÞtj
kjri�rjþðvi�vjÞtj e

�ik0�½ri�rjþðvi�vjÞt�. Solving
these equations for increasing temperature, we notice that
the fast superradiant and the slow subradiant decay rates
draw closer to the single atom decay rate � (see Fig. 3).
This result shows that the fragile subradiant modes are
quickly destroyed even by moderate atomic motion. Cold
atoms seem a well adapted system allowing us to tune
the atomic motion from being negligible to becoming
dominant. We also checked that the dominant term in the
reduced super- and subradiance stems from the position-
dependent dipole-dipole coupling VijðtÞ term rather than

from the random detuning term in Eq. (4). This dependence
on the atomic motion explains why subradiance ofN atoms
has not been observed in hot atomic vapors, despite the
efforts in this field in the 1970s [8].
Exploiting the possibility of controlled coupling via

inhomogeneous broadening even further, we studied the
role of larger laser intensities on super- and subradiance.
As the effective Hamiltonian approach is valid only to first
order in the Rabi field coupling, it can treat only the linear
optics regime. We therefore used a master equation
approach, where the evolution of the atomic density

FIG. 2 (color online). Subradiant decay rate as a function of
1=b0 (we kept N ¼ 400 constant, �0 ¼ 10�, and varied k�). At
large optical thickness it scales as / �=b0 (black dashed line)
and saturates to � for dilute clouds. The inset shows the
subradiant decay rate as a function of detuning for b0 ¼ 3 (N ¼
400, k� ¼ 20). The shaded area corresponds to the multiple
scattering region bð�0Þ> 1.

FIG. 3 (color online). Super- (blue curve) and subradiant (red
curve) decay rates as a function of Doppler broadening for N ¼
200 atoms, k� ¼ 5, and a laser detuning of �0 ¼ 10�. Initially,
the laser is driving the atoms for 50��1, and the subradiant decay
rate is evaluated 50��1 after the laser is switched off.
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operator � in the electric-dipole, rotating-wave, and Born-
Markov approximations is given in the interaction picture
by [32–34]

_� ¼ 1

i@
ðHeff�� �Hy

effÞ þ
X
i

X
j

�ijS
j��Siþ; (5)

where in the scalar light limit �ij ¼ �
sinkjri�rjj
kjri�rjj . The master

equation differs from the effective Hamiltonian approach
in the last term of Eq. (5), necessary to conserve the density
operator trace. Projecting Eq. (5) on the different Fock
states, we obtain a set of coupled equations for the density
matrix elements �GjG � hGj�jGi, �ijG � hij�jGi, and

�ijj � hij�jji. This approach is still restricted to the same

Hilbert subspace with at most one excitation and is thus
limited to moderate laser intensities or to situations where
multiple excitations are suppressed as, for instance, in the
case of Rydberg blockade. However, it does not require the
ground state population to remain unaffected and can take
into account the light shifts of the states. We have checked
analytically and numerically that, at first order in Rabi
frequency of the laser coupling, the master equation is
equivalent to the equation used in the effective
Hamiltonian approach Eq. (1) in the linear regime � ’ 1
(with correspondence �GjG $ 1, �ijG $ �i). Here we

exploit the small fluctuations induced by the random local
field driving the individual atoms i. As the local field has a
random speckle structure [see Eq. (2)], the random light
shifts and phases can be understood as an inhomogeneous
broadening mechanism, depending on the interference
term between the incident field E0ðriÞ and the scattered
field "ie

i’iE0ðriÞ. The advantage of the light shift coupling
and dephasing is the flexibility it offers as the laser intensity
can be easily and quickly controlled. Figure 4 shows the
super- and subradiant decay rates as a function of the Rabi
frequency�0 and the subradiant fraction (i.e., the remain-
ing excited state population) 50��1 after switching off the
laser (the laser was on during 50��1). When the Rabi
frequency was varied, we checked that the excited state

population remains small (
P

i�iji < 0:15) to ensure consis-
tency with the model. We observed in Fig. 4(b) up to a 3
times increase of the subradiant fraction when the intensity
is raised compared to the �0 ! 0 value determined by
Fano coupling. Note that the subradiant fraction would be
the same for any intensity with the effective Hamiltonian
approach (due to linearity). Figure 4 illustrates how chang-
ing laser intensity allows controlling the coupling strength
between super- and subradiant modes and subsequently the
subradiant population. As the laser is switched off, the local
field, based on the interference between the incident and
scattered field, is quickly reduced by a large amount. The
inhomogeneous coupling is thus significantly decreased,
closing the ‘‘door’’ between the subradiant and super-
radiant states. One can see this effect in Fig. 4(a), where
a decrease in the superradiant decay rate is observed
because there is still some inhomogeneous broadening
source just after switching off the laser. However, for
longer time the local field is much less intense and almost
no variation of the subradiant decay rate is seen—the light-
induced inhomogeneous broadening source is no longer
present. In that case, the subradiant decay rate is just the
same as the one given by Fano coupling. In the same way,
for low intensities, the inhomogeneous broadening induced
by the laser is dominated by the Fano coupling. The sub-
radiant decay and subradiant fraction then remain almost
unaffected, as illustrated in Fig. 4 for �0 < 0:1�.
In conclusion, we have shown that inhomogeneous

broadening schemes allow us to understand and control
storage of an optical excitation into long-lived subradiant
modes. We have proposed to use the cloud optical thick-
ness, the cloud temperature, or the driving laser intensity as
possible experimental control parameters for subradiance,
but further parameters, such as a far detuned speckle field,
magnetic fields, or near field coupling, are expected to
yield similar results. This opens the door for the first
observation of Dicke subradiance of photons in a cold
cloud of N atoms in free space. Inhomogeneous broad-
ening schemes will also be of interest to studies of
Anderson localization of light in resonant two-level sys-
tems [10]. Mapping the inhomogeneous coupling schemes
described in this Letter to a lambda scheme as used in
quantum information science [35] will help to understand
limitations of storage of qubits in atomic vapors in modes
less exposed to fast decay in a decoherence free subspace
[36]. Controlled transfer to other modes can also be
achieved with nonrandom coupling, as, e.g., used in slow
light experiments [37]. Thus we expect that novel schemes
to engineer more robust and faster storage and exploit the
larger Hilbert space can be addressed by using two-level
systems as toy models.
We acknowledge fruitful discussions with the cold atom

group at INLN, E. Akkermans, and Ph. Courteille. Funding
from IRSES project COSCALI and from USP/COFECUB
is acknowledged.

FIG. 4 (color online). (a) Super- (blue curve) and subradiant
(red curve) decay rates as a function of laser intensity for
N ¼ 200 atoms, k� ¼ 5 (b0 ¼ 24), and a laser detuning of
�0 ¼ 10�. (b) Subradiant fraction for the same parameters.
The laser is switched on during 50��1, and the subradiant decay
rate and subradiant fraction (i.e., the remaining excited state
population) are computed 50��1 after switching off the laser.
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