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The observables �K and �MK play a prominent role in particle physics due to their sensitivity to new

physics at short distances. To take advantage of this potential, a firm theoretical prediction of the standard-

model background is essential. The charm-quark contribution is a major source of theoretical uncertainty.

We address this issue by performing a next-to-next-to-leading-order QCD analysis of the charm-quark

contribution �cc to the effective j�Sj ¼ 2 Hamiltonian in the standard model. We find a large positive

shift of 36%, leading to �cc ¼ 1:87ð76Þ. This result might cast doubt on the validity of the perturbative

expansion; we discuss possible solutions. Finally, we give an updated value of the standard-model

prediction for j�Kj ¼ 1:81ð28Þ � 10�3 and �MSD
K ¼ 3:1ð1:2Þ � 10�15 GeV.
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Strangeness-changing neutral-current transitions play an
important role in particle physics. The parameter �K, mea-
suring indirectCP violation in the neutral kaon system, has
received increased attention recently due to the discrep-
ancy between the theoretical prediction and the experimen-
tal measurement [1–4]. In addition, together with the kaon
mass difference �MK, it provides strong constraints on
many models of new physics.

Theoretical predictions for �MSD
K and �K are calculated

in the framework of effective field theories, which allow us
to separate short- and long-distance contributions, and to
sum all terms which are enhanced by powers of large
logarithms logðm2

c=M
2
WÞ using the renormalization group.

The relevant j�Sj ¼ 2 effective Hamiltonian in the three-
quark theory reads

H �S¼2
f¼3 ¼ G2

F

4�2
M2

W½�2
c�ccSðxcÞ þ �2

t �ttSðxtÞ
þ 2�c�t�ctSðxc; xtÞ�bð�Þ ~QS2 þ H:c:; (1)

where GF is the Fermi constant, �i ¼ V�
idVis comprises the

Cabibbo-Kobayashi-Maskawa matrix elements, and
~QS2 ¼ ð �sL��dLÞ2 is the leading local four-quark operator

that induces the j�Sj ¼ 2 transition, defined in terms of the
left-handed s- and d-quark fields. The parameter bð�Þ is
factored out such that

B̂ K ¼ 3

2
bð�Þ h �K

0j ~QS2jK0i
f2KM

2
K

; (2)

where fK is the kaon decay constant, is a renormalization-
group invariant quantity comprising the hadronic matrix
element. It can be calculated on the lattice with high
precision [5–9].

The loop functions S can be found, for instance, in [10].
The QCD and logarithmic corrections are contained in the
� factors and are known at next-to-leading order (NLO) for
the dominant top-quark contribution [�tt ¼ 0:5765ð65Þ
[11] ]. The relative suppression of the top-quark

contribution by the small imaginary part of �2
t , relevant

for �K, lets the charm-quark contributions compete in size.
We have already performed a next-to-next-to-leading-
order (NNLO) calculation of the charm-top contribution
[�ct ¼ 0:496ð47Þ [12] ]. Here, we focus on the charm-
quark contribution, known until now at NLO, with a
substantial error [�cc ¼ 1:40ð35Þ [3,13] ]. It multiplies
SðxcÞ ¼ xc þOðx2cÞ, where xc � m2

c=M
2
W and mc ¼

mcðmcÞ is the MS charm-quark mass. The Glashow-
Iliopoulos-Maiani (GIM) mechanism cancels a potential
large logarithm at leading order (LO).
The charm-quark contribution �cc determines the short-

distance part of the kaon mass difference �MSD
K and enters

�K with a negative sign. The large remaining scale uncer-
tainty at NLO hints at potentially sizable NNLO correc-
tions; we confirm this expectation by an explicit
calculation in this Letter.
Our calculation proceeds in three steps: determination of

the initial conditions of the Wilson coefficients at the
electroweak scale, renormalization-group evolution to the
charm-quark scale, and matching onto the effective three-
quark theory. The new result is the three-loop matching
condition at the charm-quark scale.
The effective Hamiltonian in the five- and four-flavor

theory relevant for �cc reads

H �S¼1
f¼5;4 ¼

4GFffiffiffi
2

p X
i¼þ;�

Ci

X
q;q0¼u;c

V�
q0dVqsQ

qq0
i : (3)

Here the current-current operators are given by Qqq0
� ¼

½ð�s�L��q
�
LÞ � ð �q0�L ��d�LÞ � ð�s�L��q

�
LÞ � ð �q0�L ��d�LÞ�=2,

where � and � are color indices, and we define the
evanescent operators in such a way that the anomalous
dimension matrix is diagonal through NNLO [12,14].
The GIM mechanism cancels a contribution of the
j�Sj ¼ 2 Hamiltonian above the charm-quark scale; we
verified explicitly that mixing of dimension-six into
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dimension-eight operators proportional to �2
c does not

occur above the charm-quark scale.
We take the initial conditions for C�, obtained by a

NNLO matching calculation at the electroweak scale,
from Ref. [14]. The dimension-eight Wilson coefficient
does not receive a contribution at the electroweak scale
[15]. The running of C� to the charm-quark scale can be
taken up to NNLO from [14].

At the scale �c ¼ OðmcÞ the charm quark is removed
from the theory as a dynamical degree of freedom.
Requiring the equality of the Green’s functions in both
theories at �c leads to the matching condition

X
i;j¼þ;�

CiCjhQiQji ¼ 1

8�2
~Ccc
S2h ~QS2i; (4)

which we use to determine the Wilson coefficient ~Ccc
S2,

defined implicitly in (10) below. Here, angle brackets
denote operator matrix elements between s- and d-quark

external states. Writing h ~QS2i ¼ rS2h ~QS2ið0Þ and hQiQji ¼
m2

c=ð8�2Þdijh ~QS2ið0Þ, and expanding all quantities in

powers of �s=ð4�Þ, we find the following contributions
to the matching (a sum over i; j ¼ þ;� is implied):

~Cccð0Þ
S2 ¼ m2

cð�cÞCð0Þ
i Cð0Þ

j dð0Þij ;

~Cccð1Þ
S2 ¼ m2

cð�cÞ½Cð0Þ
i Cð0Þ

j ðdð1Þij � dð0Þij ~r
ð1Þ
S2 Þ þ ðCð1Þ

i Cð0Þ
j þ Cð0Þ

i Cð1Þ
j Þdð0Þij �;

~Cccð2Þ
S2 ¼ m2

cð�cÞ½Cð0Þ
i Cð0Þ

j ðdð2Þij � ðdð1Þij � dð0Þij ~r
ð1Þ
S2 Þ~rð1ÞS2 � dð0Þij ~r

ð2Þ
S2 Þþ ðCð1Þ

i Cð0Þ
j þ Cð0Þ

i Cð1Þ
j Þðdð1Þij � dð0Þij ~r

ð1Þ
S2 Þ

þ ðCð2Þ
i Cð0Þ

j þ Cð1Þ
i Cð1Þ

j þ Cð0Þ
i Cð2Þ

j Þdð0Þij þ 2

3
log

�2
c

m2
c

ððCð1Þ
i Cð0Þ

j þ Cð0Þ
i Cð1Þ

j Þdð0Þij þ Cð0Þ
i Cð0Þ

j dð1Þij Þ�: (5)

The strong coupling constant �s is defined in the three-
quark theory throughout this Letter, and superscripts in
brackets denote the order of the expansion in �s.
Furthermore, we expand the charm-quark mass defined at
the scale �c, viz. mcð�cÞ, about mcðmcÞ, as in Ref. [14].

In order to evaluate the Eqs. (5), we compute the finite
parts of one-, two-, and three-loop Feynman diagrams of
the type shown in Fig. 1; the evanescent operators in the
j�Sj ¼ 2 sector have been chosen as in [12]. Our NLO
result confirms the calculation by Herrlich and Nierste [16]
for the first time. The three-loop matching calculation

yields [we use the notation d̂ð2Þij � dð2Þij � ðdð1Þij �
dð0Þij ~r

ð1Þ
S2 Þ~rð1ÞS2 � dð0Þij ~r

ð2Þ
S2 ; note also that d̂ð2Þþ� ¼ d̂ð2Þ�þ]:

d̂ð2Þþþ ¼ 1 665 873 233

8 164 800
� 1573

162
B4 � 133

72
D3 þ 49

36
	2lc

þ 4313

216
l2c � 15 059

1296
lc þ 210 213

560
S2 � 1501

54
	22

� 7 567 241

204 120
	2 � 1 697 893

7776
	3 þ 11 575

216
	4; (6)

d̂ð2Þþ� ¼ 87 537 463

1 166 400
þ 685

162
B4 � 83

72
D3 þ 695

36
	2lc

� 1475

216
l2c � 57 763

1296
lc � 4797

80
S2 � 791

54
	22

þ 366 569

29 160
	2 þ 57 673

7776
	3 � 4999

216
	4; (7)

d̂ð2Þ�� ¼ 2 129 775 941

8 164 800
þ 491

162
B4 þ 11

72
D3 þ 865

36
	2lc

þ 12 533

216
l2c þ 171 121

1296
lc þ 59 121

560
S2 � 517

54
	22

þ 9 261 883

204 120
	2 � 411 709

7776
	3 � 7913

216
	4; (8)

where we defined lc ¼ logð�2
c=m

2
cð�cÞÞ, 	n denotes

Riemann’s zeta function of n, and the remaining constants
are defined in [17]. This result is new.
Since the calculation of the NNLO contributions to�cc is

quite complex, we checked our results in several ways. First
of all the calculation of the Oð10 000Þ Feynman diagrams,
the renormalization, and thematching calculation, has been
performed independently by the two of us, using a com-
pletely different set of computer programs, leading to iden-
tical results. On the one hand we use QGRAF [18] for
generating the diagrams; the evaluation of the integrals is
then performed using the program packages Q2E, EXP, and
MATAD [17,19,20]. On the other hand, all calculations have

been performed using an independent setup, based on
FEYNARTS [21], MATHEMATICA, and FIRE [22].

As a further check of our calculation, we verified that the
matrix elements are finite and independent of the gauge-
fixing parameter 
. We have also checked analytically that
�cc is independent of the matching scales �W , �b, and �c

FIG. 1. Sample one-, two-, and three-loop diagrams contrib-
uting to the matching at the charm-quark scale. Loopy lines are
gluons, and straight lines are quarks. The combination c-u arises
from the GIM mechanism; q denotes any of the quarks u, d, s.
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to the considered order of the strong coupling constant, by
expanding the full solution of the renormalization-group
equations about the respective matching scale.

The effective Hamiltonian valid below the charm-quark

threshold contains only the single operator ~QS2. The
renormalization-group evolution of the Wilson coefficient
~Ccc
S2 is described by the evolution matrix corresponding to

the anomalous dimension of ~QS2:

~C cc
S2ð�Þ ¼ Uð�;�cÞ ~Ccc

S2ð�cÞ: (9)

We express the coefficient �cc in a scale- and scheme-
independent way as

�cc ¼ 1

m2
cðmcÞ

~Ccc
S2ð�cÞ½�sð�cÞ�aþK�1þ ð�cÞ: (10)

The remaining scale dependence present in (9) is absorbed
into

bð�Þ ¼ ½�sð�Þ��aþKþð�Þ; (11)

where, up to second order in �s,

Kþð�Þ ¼ 1þ Jð1Þþ
�sð�Þ
4�

þ Jð2Þþ
�
�sð�Þ
4�

�
2
; (12)

and the exponent aþ ¼ 2=9 is the so-called magic number
for the operator Qþ (the magic numbers as well as the
matrices J, comprising the higher-order QCD contribu-
tions to the renormalization-group evolution, are defined,
for instance, in [23]). This scale dependence is canceled
by the corresponding scale dependence of the hadronic
matrix element, order by order in perturbation theory.
Consequently, our result is independent of �c up to and
including terms of Oð�2

sÞ.
As a first estimate of the theoretical uncertainty of �cc

we study the residual scale dependence, using three differ-
ent methods to evaluate the running strong coupling con-
stant [14]. Matching at mcðmcÞ and varying �c between 1
and 2 GeV (see Fig. 2) and �W between 40 and 160 GeV
we find the following numerical value at NNLO,

�cc ¼ 1:86� 0:53�c
� 0:07�W

� 0:06�s
� 0:01mc

; (13)

where we also display the parametric uncertainties stem-
ming from the experimental error on �sðMZÞ ¼ 0:1184ð7Þ
[24] and mcðmcÞ ¼ 1:279ð13Þ GeV [25]. The dependence
on the scale �b and on mt is completely negligible [26].

Varying �c and �W in the same range as above, we find
at NLO

�NLO
cc ¼ 1:38� 0:52�c

� 0:07�W
� 0:02�s

; (14)

where the error indicated by the subscript ‘‘�c’’ includes
the effect of the three ways of determining �s. We have
included the parametric uncertainty related to �s; the error
resulting from mc is negligible.

We find a substantial shift from NLO to NNLO for �cc;
furthermore, we observe that the NNLO calculation does

not reduce the residual scale dependence (see Fig. 2). This
reveals a bad convergence behavior of the expansion of �cc

in �s, even after having summed all terms proportional to
�n
s logðm2

c=M
2
WÞn and �nþ1

s logðm2
c=M

2
WÞn using the renor-

malization group. Some of the higher-order terms leading
to the residual scale dependence are scheme dependent. In
order to show that the large scale dependence is not arti-
ficial and to gain a better understanding of its origin, we
expand the full solution of the renormalization-group equa-
tion. We find, up to terms cubic in �s,

�cc=ð�sðmcÞÞ2=9 ¼ 1þ �sðmcÞð0:25þ 0:32LcÞ
þ ð�sðmcÞÞ2ð1:20þ 0:03Lb

þ 0:22Lc þ 0:27L2
cÞ;

where Lc ¼ logðm2
c=M

2
WÞ ¼ �8:28, Lb¼ logðm2

b=M
2
WÞ¼

�5:92, and �sðmcÞ ¼ 0:35 at three-loop accuracy. Here we
neglect the small terms proportional to L2

b. This result is

independent of the renormalization scale and the definition
of the evanescent operators and depends implicitly only on
the choice of the renormalization schemes used to deter-

mine B̂K [cf. Eq. (10)], �s, and the charm-quark mass. The
large logarithmic terms proportional to powers of Lb and
Lc are summed to all orders by the renormalization group
in our full result, but the constant term of the NNLO
correction is more problematic: it is almost twice as large
as its NLO counterpart. Such large constant parts are
expected to lead to a large residual sale dependence, as
we indeed observe in Fig. 2.
The convergence of the series can be somewhat im-

proved by expanding the square of the charm-quark mass
multiplying �cc in Eq. (1) in powers of �s, noting that the

FIG. 2. �cc as a function of �c, matching at � ¼ mcðmcÞ and
fixing �W ¼ 80 GeV and �b ¼ 5 GeV. The LO result is rep-
resented by the double-dotted line. We also show the NLO value
of �cc, with the running �s evaluated either by solving the
renormalization-group equations numerically (dashed line), or
by first computing the scale parameter �QCD, either explicitly

(dotted line) or iteratively (dash-dotted line)—see Ref. [36] for
the details. The resulting uncertainty is sizable at NLO. The solid
lines show the corresponding NNLO results; now the ambiguity
is almost canceled, whereas the residual scale dependence is still
large.
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charm-quark mass receives negative corrections, although
the effect is not substantial at NNLO.

As a consequence of the discussion above, we propose
the following temporary prescription: we take �cc at �c ¼
mc as the central value, and as the theory uncertainty the
absolute size of the NNLO correction and the residual scale
dependence, added in quadrature. This leads to

�cc ¼ 1:87� 0:76: (15)

Compared to the NLO value �NLO
cc (14), this corresponds to

a positive shift of approximately 36%. The parametric
uncertainty is essentially negligible with respect to the
theoretical uncertainty.

Finally, we study the impact of �cc at NNLO on the
prediction of j�Kj and�MSD

K . We use the input values from
[24], in particular jVcbj ¼ 4:06ð13Þ � 10�2, plusmtðmtÞ ¼
163:7ð1:1Þ GeV [27],mbðmbÞ ¼ 4:163ð16Þ GeV [25], � ¼
0:2255ð7Þ [28], �� ¼ 0:923ð6Þ [29], 
s ¼ 1:243ð28Þ [30],
�tt ¼ 0:5765ð65Þ [12], B̂K ¼ 0:737ð20Þ [30,31], �ct ¼
0:496ð47Þ [12], in the following formula (we express ��
and �� through sin2�; for a discussion and definitions,
see [1,10]):

j�Kj ¼ ��C�B̂KjVcbj2�2 ��½jVcbj2ð1� ��Þ�ttSðxtÞ
þ �ctSðxc; xtÞ � �ccSðxcÞ�: (16)

Using the numerical values given above, we obtain

j�Kj ¼ ð1:81� 0:14�cc
� 0:02�tt

� 0:07�ct
� 0:05LD

� 0:23parametricÞ � 10�3: (17)

The first three errors correspond to �cc, �tt, �ct, respec-
tively. The error indicated by LD originates from the long-

distance contribution, namely B̂K and ��, which account
for 81% and 19% of the long-distance error, respectively.
Half of the parametric error stems from jVcbj (49%), while
all other contributions are well below 20%. All errors have
been added in quadrature.

Compared to the prediction using the NLO value �NLO
cc ,

j�NLOK j ¼ 1:90ð27Þ � 10�3, this corresponds to a shift of
approximately �5%, and overcompensates the shift of
þ3% found in [12]. The large perturbative corrections
are thereby partially mitigated in the observable �K.

Finally, we estimate the short-distance contribution to
�MK. Using [10]

�MSD
K ¼ G2

F

6�2
f2KBKMKM

2
W

�
�� �3

2

�
2
�ccxc (18)

we find�MSD
K ¼ 3:1ð1:2Þ � 10�15 GeV, where the central

value accounts for 89% of the measured value. We ne-
glected the correction due to top quarks, of the order of 1%.
The error is dominated by �cc (86%) and BK (6%).
Unfortunately, the LD contributions to �MK are poorly
known; the discussion in Ref. [32] hints at a positive
contribution. In addition, our calculation shows that also
the SD contribution cannot be computed as reliably as

thought previously, and thus the prediction of the total
kaon mass difference suffers from large uncertainties.
We have performed the first NNLO QCD analysis of the

charm-quark contribution �cc to the j�Sj ¼ 2 effective

Hamiltonian H j�Sj¼2
f¼3 . We confirm the analytical results

for �cc obtained at NLO in Ref. [16] for the first time.
The discrepancy between our standard-model prediction

and the precisely measured experimental value j�Kjexp ¼
2:228ð11Þ � 10�3 [24] could be interpreted as a tension
within the standard model if we got a better control of the
theoretical uncertainty. In view of the considerable residual
scale dependence and the large NNLO shift, sizable cor-
rections beyond NNLO may be expected.
Given the importance of the observable �K, an effort

should be made to circumvent these difficulties. We see at
least two possible ways to proceed: in the short run, one
could make use of the cancellation of the scheme depen-
dence between of the parameter BK and the effective
Hamiltonian. One could utilize this scheme dependence
[which would affect the quantities J in Eq. (12)] to achieve
a better convergence of �cc. Recently, new lattice renor-
malization schemes have been employed in the determi-
nation of BK [6,33]; they use nonexceptional momentum
configurations, leading to better control over lattice uncer-
tainties. Furthermore, they might lead to a better conver-
gence at NNLO, as suggested by the good perturbative
behavior of the continuum matching for the light-quark
masses [34,35]. We encourage the investigation of the
effects of these schemes also on the convergence of
the series for �cc, in particular, at NNLO. In the long
run, the possibility of calculating the effects of a dynamical
charm quark on the lattice might seem most promising and
should be further studied.
We thank Gerhard Buchalla, Taku Izubuchi, and Ulrich

Nierste for helpful discussions and comments on the manu-
script, and Matthias Steinhauser for providing us with
numerical values of the charm-quark mass at different
orders in the strong coupling constant. J B thanks Ulrich
Nierste for suggesting to work on this topic.
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