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We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence

giving rise to a counterintuitive mechanism of ‘‘cooling by heating.’’ In this effect, the mere incoherent

occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other

modes. This notion of effectively rendering states more coherent by driving with incoherent thermal

quantum noise is applied here to the optomechanical setting, where this effect occurs most naturally. We

discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian

quantum states with respect to stationary classical stochastic processes. The potential of experimentally

demonstrating this counterintuitive effect in optomechanical systems with present technology is sketched.
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Cooling in quantum physics is usually achieved in just
the sameway as it occurs in classical physics or in common
everyday situations: One brings a given system into contact
with a colder bath. Coherent driving of quantum systems
can effectively achieve the same aim, most prominently in
instances of laser cooling of ions or in its optomechanical
variant, cooling mechanical degrees of freedom using the
radiation pressure of light. The coherence then serves a
purpose of, in a way, rendering the state of the system
‘‘more quantum.’’ In any case, in these situations, the
interacting body should first and foremost be cold or
coherent.

In this work, we introduce a paradigm in which thermal
hot states of light can be used to significantly cool down a
quantum system. To be specific, we will focus on an
optomechanical [1–6] implementation of this idea: This
type of system seems to be an ideal candidate to demon-
strate this effect with present technology; it should how-
ever be clear that several other natural instances can well
be conceived. Intuitively speaking, it is demonstrated that
due to the driving with thermal noise, the interaction of
other modes can be effectively enhanced, giving rise to a
‘‘transistorlike’’ effect [7]. We flesh out this effect at hand
of two approaches following different approximation
schemes. The first approach is essentially a weak coupling
master equation, while the second approach makes use of
stochastic samplings with respect to colored classical sto-
chastic processes [9], which constitutes an interesting and
practical tool to study such quantum optical systems of
several modes in its own right.

The observation made here adds to the insight that
appears to be appreciated only fairly recently, in that
quantum noise does not necessarily only give rise to heat-
ing, decoherence, and dissipation, providing, in particular,
a challenge in applications in quantum metrology and in
quantum information science. When suitably used,
quantum noise can also assist in processes thought to be

necessarily of coherent nature, in noise-driven quantum
phase transitions [10], quantum criticality [11], in entan-
glement distillation [12] or in quantum computation [13]. It
turns out that thermal noise, when appropriately used, can
also assist in cooling. This counterintuitive effect is not in
contradiction to the laws of thermodynamics, as is plau-
sible when viewing this setup as a thermal machine or heat
engine operating in the quantum regime [14]. Unlike
Ref. [15], which aims at fleshing out the smallest possible
heat engine, here we ask the question whether a quantum
continuous-variable system can actually be cooled with
incoherent light.
The system under consideration.—We consider a system

of two optical modes at frequencies !a and !b, respec-
tively, that are coupled to a mechanical degree of freedom
at frequency !c, Fig. 1. The Hamiltonian of the entire
system is assumed to be well-approximated by H ¼ H0 þ
H1, where the free part is given by H0 ¼ @!aa

yaþ
@!bb

ybþ @!cc
yc, and the interaction can be cast into

the form

H1 ¼ @gðaþ bÞyðaþ bÞðcþ cyÞ: (1)

It is convenient to move to a rotating interaction picture
with respect to @!bðayaþ bybÞ. The radiation pressure
interaction is invariant under this transformation, while H0

simplifies to

FIG. 1 (color online). The optomechanical setup primarily
being considered in this work, involving two optical modes
and a mechanical one.
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H0
0 ¼ @�ayaþ @!cc

yc;

where � ¼ !a �!b. For most of what follows, the fre-
quencies are chosen such that� ¼ !c, as we will see is the
optimal resonance for cooling the mechanical resonator.
This can be realized by tuning the mechanical degree of
freedom or the cavity mode splitting [16]. In fact, this is
exactly the setting proposed in Ref. [17] as a feasible three-
mode optoacoustic interaction, in an idea that can be traced
back to studies of parametric oscillatory instability in
Fabry-Perot interferometers [18]. Similarly, with systems
of high-finesse optical cavities coupled to thin semitrans-
parent membranes [19], of double-microdisk whispering-
gallery resonators [20] or of optomechanical crystals [21]
such a situation can be achieved. Surely numerous other
architectures are well conceivable.

In addition to this coherent dynamics, the system is
assumed to undergo natural damping and decoherence—
unavoidable in the optomechanical context. The quantum
master equation governing the dynamics of the entire
system embodying the two optical modes and the mechani-
cal degree of freedom is given by

_� ¼ L� ¼ � i

@
½H;�� þ ðLa þLb þLcÞ�; (2)

with the generators being defined by La ¼ �Da and

L b ¼ ð1þ nbÞ�Db þ nb�Dby ; (3)

L c ¼ ð1þ ncÞ�Dc þ nc�Dcy ; (4)

making use of the notation for a generator in Lindblad form

Dxð�Þ ¼ 2x�xy � fxyx; �g: (5)

The parameter � is the cavity decay rate, � is the mechani-
cal damping rate and nj are the mean occupation numbers

of the thermal baths of modes j ¼ b, c. Here, we allow the
optical bath of mode b to be in a Gibbs or thermal state
having an arbitrary temperature, while mode a is not
driven.

This type of damping reflects the plausible mechanism
of loss. For the mechanical motion, we are primarily
interested in the regime where !m � �, such that the
damping mechanism of quantum Brownian motion based
on some spectral density is virtually indistinguishable from
the quantum optical Markovian damping as for an optical
mode [22]. For that reason, for coherence of presentation,
the same type of dissipative dynamics has been chosen for
the optical and mechanical modes.

We will now discuss this given situation in two different
pictures. The first one is a weak coupling approach leading
to approximate analytical expressions. The second one
involves sampling over colored classical stochastic pro-
cesses. These methods are further discussed in the range of
their validity in the EPAPS, where they are also compared

with exact diagonalization methods for small photon num-
bers [23].
Description 1: Weak coupling approximation as an ana-

lytical approach.—In this approach, a picture is developed
grasping the physical situation well for small effective
couplings g

ffiffiffiffiffi
nb

p
. In addition to the actual physical baths

of the three modes a, b, and c giving rise to dissipative
dynamics, we also consider mode b as a further external
‘‘bath’’ and derive an effective master equation for modes
a and c only. This is a good approximation if the back
action on mode b is negligible and up to second order in the
coupling constant g. Having this picture in mind, the
Liouvillian in Eq. (2) can be decomposed as L ¼ Lsys þ
Lint þLbath, where Lbath ¼ Lb and

L sys ¼� i

@
½H0

0; ��þLaþLc; Lint ¼� i

@
½H1; ��: (6)

Using projection operators techniques [24], one can derive
a master equation for the reduced system �a;c ¼ trb½��

_�a;cðtÞ ¼ Lsys�a;cðtÞ
þ trbLint

Z 1

0
dseLrsLint�a;cðt� sÞ � �b:

HereLr ¼ Lsys þLbath andLb�b ¼ 0. Making use of the

explicit expression (6) for Lint, we have

_�a;cðtÞ ¼ Lsys�a;cðtÞ
� 1

@
2
trb

�
H1;

Z 1

0
dseLrs½H1; �a;cðt� sÞ � �b�

�
:

(7)

In what follows, we will make a sequential approximation
of the interaction HamiltonianH1 and the damping mecha-
nism. In order to be as transparent as possible, we mark
each of the steps with a roman letter.
Equation (7)—up to second order expansion in the

coupling g, which constitutes the first approximation step
(a)—can also be written as

_�a;cðtÞ ¼ Lsys�a;cðtÞ
� 1

@
2
trb

�
H1;

Z 1

0
ds½eLy

r sðH1Þ; �a;cðtÞ � �b�
�
;

(8)

whereLy
r acts only on the Hamiltonian H1, corresponding

to a ‘‘dissipative interaction picture’’ with respect to Lr.
We start from Eq. (1) and (b) neglect the term propor-

tional to aya because we assume mode a to be weakly
perturbed from its ground state. In contrast, we allow the
physical optical bath of mode b to have an arbitrary
temperature and therefore we cannot neglect the term
proportional to byb. We rewrite the approximated H1 as

H0
1 ¼ @gðaybþ byaþ �Þðcþ cyÞ; (9)
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where the operator � ¼ byb� nb represents the intensity
fluctuations of mode b. In order to have vanishing first
moments with respect to mode b, the mean force propor-
tional to hbybi has been subtracted, which is responsible of
merely shifting the resonator equilibrium position. Since
!a �!b ¼ !c, the (c) rotating wave approximation
(RWA) of Eq. (9) is

H00
1 ¼ @gðaybcþ abycyÞ þ @g�ðcþ cyÞ: (10)

As will be explained later in more details, the first term of
the Hamiltonian is responsible for the cooling of the me-
chanical resonator, while the second term corresponds to
an additional heating noise.

In order to compute the partial trace in Eq. (8), we need
the two-time correlation functions of the thermal light in
mode b,

hbeLy
r sbyi ¼ e��snb; h�eLy

r s�i ¼ e�2�sðn2b þ nbÞ:
(11)

The exponential functions in Eqs. (11) determine the time
scale of the integral kernel in Eq. (8), which will be of the
order of ��1. Within this time scale (d) we can neglect the
effect of the mechanical reservoir (� � �), and the action

of the map eL
y
r s on the system operators will be

eL
y
r sa ¼ e�ð�þi�Þsa ¼ e�ð�þi!cÞsa;

eL
y
r sc ¼ e�ð�þi!cÞsc ’ e�i!csc:

We can finally perform the integration in Eq. (8), and since
all the odd moments of �b vanish, the cooling and heating
terms in Eq. (10) generate two independent contributions
to the master equation, respectively

L cool ¼ g2

2�
ðð1þ nbÞDacy þ nbDaycÞ; (12)

L heat ¼ 2�g2ðn2b þ nbÞ
4�2 þ!2

c

ðDcy þDcÞ; (13)

where in calculating Lheat we (e) kept only the counter-
rotating terms. The effect of Lheat is simply a renormal-
ization of the mean occupation number of the mechanical
bath

nc � ~nc ¼ nc þ 2�g2ðn2b þ nbÞ
�ð4�2 þ!2

cÞ
;

always increasing, as expected, the effective temperature

of the environment. Denoting with ~Lsys the corresponding

renormalized Liouvillian, the master equation can be writ-
ten as

_� a;c ¼ ð ~Lsys þLcoolÞ�a;c: (14)

With respect to Eq. (2) and (14), can be numerically solved
with much less computational resources but we have to
remind ourselves that this approach is valid only within the

RWA and for weak coupling: �, g � !c. Another advan-
tage of Eq. (14) is that the corresponding adjoint equations
for the number operators n̂a ¼ aya and n̂c ¼ cyc are
closed with respect to these operators, that is

_̂n a ¼ �2�n̂a � g2

�
ððnb þ 1Þn̂a � nbn̂c � n̂an̂cÞ;

_̂nc ¼ �2�n̂c � g2

�
ðnbn̂c � ðnb þ 1Þn̂a � n̂an̂cÞþ 2�~nc:

Assuming (f) that the factorization property hn̂an̂ci ’
hn̂aihn̂ci holds—which is essentially a mean-field approach
which is expected to be good in case of small correlations,
or, again as assumed, for small values of g—we can find
analytical expressions for the steady state expectation val-
ues:

hn̂ci ¼ ~nc � �

2
þ

�ð~nc þ �Þ2
4

� �nb~nc
�

�
1=2

;

hn̂ai ¼ ð~nc � hn̂ciÞ�
�

;

where � ¼ 1þ nbð1þ �=�Þ þ 2�2=g2.
Description 2: Sampling with respect to colored sta-

tionary classical stochastic processes.—In this approach,
we start from the exact dynamics Eq. (2) but treat mode b
as a classical thermal field and neglect any feedback from
the resonator. We substitute the bosonic operator with a
complex amplitude bðtÞ � �t, giving rise to a semiclassi-
cal picture. The parameter �t can be described as a clas-
sical stochastic process defined by the stochastic
differential equation (SDE)

d�t ¼ ���tdtþ ffiffiffiffiffiffiffiffiffi
�nb

p ðdWðxÞ þ idWðyÞÞ; (15)

with independent Wiener increments [9] obeying the Itō

rules dWðaÞdWðbÞ ¼ �a;bdt, dW
ða;bÞdt ¼ 0. The dynamics

of the remaining modes a and c instead, can be efficiently
treated quantum mechanically; this is true, since for every
single realization of the process (15), the evolution defines
a Gaussian completely positive map and therefore the

corresponding Gaussian state �ð�tÞ
a;c ðtÞ ¼ Eð�tÞ

t ð�a;cÞ can be

described entirely in terms of first and second moments.
The actual quantum state of the system will in general not
be exactly Gaussian, it can nonetheless be simulated by
sampling over many Gaussian states associated with differ-
ent realizations of �t: Only the respective weight in the
convex combinations are such that the resulting state can

be non-Gaussian. The resulting state �a;cðtÞ ¼ E�ð�tÞ
a;c ðtÞ

will be our semiclassical description of the system.
It is convenient to introduce a vector of quadratures

operators u ¼ ½xc; yc; xa; ya�, where xj ¼ ðjþ jyÞ= ffiffiffi
2

p
,

yj ¼ iðjy � jÞ= ffiffiffi
2

p
and j ¼ a, c. From Eq. (2), we get a

SDE for the first moments

dhuit
dt

¼ Athuit þ ft; (16)
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where

At ¼

�� !c 0 0

�!c �� g�ðxÞ
t g�ðyÞ

t

�g�ðyÞ
t 0 �� �

g�ðxÞ
t 0 �� ��

2
6666664

3
7777775
; ft ¼

0

gj�tj2
0

0

2
666664

3
777775;

(17)

�ðxÞ
t ¼ ð�t þ ��

t Þ, �ðyÞ
t ¼ ið��

t � �tÞ. The second mo-
ments can be arranged in the matrix Vt ¼ Rehuuyit, sat-
isfying the SDE

dVt

dt
¼ AtVt þ VtA

T
t þDþ Ft; (18)

where D ¼ diag½�ð2nc þ 1Þ; �ð2nc þ 1Þ; �; ��, and Ft ¼
fthuiTt þ huitfTt . The statistical average over many realiza-
tion of Vt will be an estimator for the second moments of
the quantum state VðtÞ ¼ EðVtÞ. In particular, the first two
diagonal elements give the effective phonon number of
the mechanical oscillator, since hnciðtÞ ¼ ðV1;1ðtÞ þ
V2;2ðtÞ � 1Þ=2. The three stochastic differential Eqs. (15),

(16), and (18) can be numerically integrated in sequential
order. In our simulations, see Fig. 2, we used the Euler
method, for each time step dt sampling the associated
Wiener increments in Eq. (15) with normal distributions
of variance �2 ¼ dt.

Intuitive explanation of the effect of cooling by heat-
ing.—This effect can be intuitively explained at hand of
Eq. (10) in Description 1: Two competing processes play
here an important role: The first term appears like a beam
splitter interaction between the modes a and c with a
‘‘reflectivity’’ given by the thermal fluctuations of the

amplitude of mode b. This is responsible for the cooling
of the mirror. That is to say, the occupation of mode b takes
the role resembling the ‘‘basis of a transistor’’: A high
occupation renders the interaction between a and c
stronger, hence triggering the cooling effect. For this effect
to be relevant, the coherence or purity of the state of b does
not play a dominant role, and hence even thermal noise can
give rise to cooling. This is referred to as ‘‘good noise’’.
The second term corresponds to the fluctuations of the
radiation pressure of mode b and it is a source of ‘‘bad
noise’’ which heats the mechanical mode.
Similarly, this effect can be studied at hand of the

stochastic picture of Description 2, when observing
Eq. (18). In addition to the intrinsic quantum noise de-
scribed by D, stochastic fluctuations of �t generate an
additional heating noise given by the matrix Ft.
However, the same process �t is also contained in the
matrix At and corresponds to a cooling noise, up to the
approximations identical to the above ‘‘good noise.’’ The
reason is quite evident from Eq. (17), where we observe
that the coupling between the hot mechanical oscillator and
the cold optical mode is mediated by the thermal fluctua-
tions of�t. This optomechanical coupling, which would be
zero without noise, leads to a sympathetic cooling of the
mechanical mode.
Example.—We will now discuss the effect of cooling by

heating at hand of an example using realistic parameters in
an optomechanical setting. Figure 2 shows the effective
temperature of the mechanical mode as a function of the
number of photons in mode b: Here, effective temperature
is defined as the temperature T of a Gibbs state

�cðTÞ ¼ e�@!cc
yc=ðkTÞ

trðe�@!cc
yc=ðkTÞÞ

such that hn̂ci ¼ trð�cðTÞcycÞ. One quite impressively en-
counters the effect of cooling by heating, for increasing
photon number and hence effective temperature of this
optical mode. For very large values of the photon number,
the ‘‘bad noise’’ eventually becomes dominant, resulting
again in a heating up of the mechanical mode. Note that
needless to say, the effective temperature of the optical
mode b is usually larger than the mechanical one by many
orders of magnitude (approximately 1010 K for reasonable
parameters).
Summary.—In this work, we have established the notion

of cooling by heating, which means that cooling processes
can be assisted by means of incoherent hot thermal light.
We focused on an optomechanical implementation of this
paradigm. We also introduced new theoretical tools to
grasp the situation of driving by classical noise, including
sampling techniques over stochastic processes. To experi-
mentally demonstrate this counterintuitive effect should be
exciting in its own right. Putting things upside down, one
could also conceive settings similar to the one discussed
here as demonstrators of small heat engines [15] operating
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FIG. 2 (color online). Room temperature cooling with parame-
ters reminding of those typical in realistic experiments [3]:!c ¼
2� MHz, � ¼ 0:2!c, g ¼ 0:3� 10�5!c, and � ¼ 10�3!c. The
black line shows the predictions of the steady state using
Description 1, the dots are a result from stochastic sampling
using Description 2 (with 100 realizations), which qualitatively
coincide well. The dashed line shows the expected phonon
number scaled by a factor of 6� 10�5. One clearly finds that
an increased population of mode b leads to a significant cooling
of the mechanical mode—up to a point when eventually the
‘‘bad noise’’ becomes dominant.
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at the quantum mechanical level, where b takes the role of
an ‘‘engine’’ and mode a of a ‘‘condenser’’. To fully
explore these implications for feasibly realizing quantum
thermal machines constitutes an exciting perspective. It
would also be interesting to fully flesh out the potential
for the effect to assist in generating nonclassical states [25]
‘‘the bit’’ or entanglement [5,26]. Finally, quite intrigu-
ingly, this work may open up ways to think of optically
cooling mechanical systems without using lasers at all, but
rather with basic, cheap LEDs emitting incoherent light.

We would like to thank the EU (Minos, Compas,
Qessence), the EURYI, and QuOReP for support.
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