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We present a method to implement ultrafast two-qubit gates valid for the ultrastrong coupling and deep

strong coupling regimes of light-matter interaction, considering state-of-the-art circuit quantum electro-

dynamics technology. Our proposal includes a suitable qubit architecture and is based on a four-step

sequential displacement of the intracavity field, operating at a time proportional to the inverse of the

resonator frequency. Through ab initio calculations, we show that these quantum gates can be performed

at subnanosecond time scales while keeping a fidelity above 99%.
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Introduction.—With the advent of quantum information
science [1], there have been enormous efforts in the design
of devices with a high level of quantum control and coher-
ence [2]. Circuit QED [3–5] has become a leading tech-
nology for solid-state-based quantum computation, and its
performance is approaching that of trapped ions [6] and all-
optical implementations [7]. Considerable progress has
been made in recent circuit-QED experiments involving
ultrastrong coupling [8,9], the two-qubit gate and algo-
rithms [10–15], and the three-qubit gate and entanglement
[16–18]. Most of the proposed gates are based on slow
dispersive interactions or faster resonant gates and would
require operation times of about tens of nanoseconds.

To speed up gate operations, the latest circuit-QED
technology offers the ultrastrong coupling (USC) regime
of light-matter interactions [8,9,19–21], where the cou-
pling strength g is comparable to the resonator frequency
!r (0:1 & g=!r & 1). This should open the possibility to
achieve ultrafast gates operating at subnanosecond time
scales [22,23]. In this sense, the design of these novel gates
becomes a challenge as the rotating-wave approximation
breaks down and the complexity of the quantum Rabi
Hamiltonian emerges [24,25]. Preliminary efforts have
been done in this direction involving different configura-
tions of superconducting circuits [26–28]. Likewise, in a
recent contribution, the possibility of performing protected
quantum computing has been discussed [29].

In this Letter, we propose a realistic scheme to realize
ultrafast two-qubit controlled phase (CPHASE) gates be-
tween two newly designed flux qubits [30], coupled gal-
vanically to a single-mode transmission line resonator
(Fig. 1). Our proposal includes (i) a CPHASE gate protocol
operating at times proportional to the inverse of the reso-
nator frequency and (ii) the design of the qubit-resonator
system, allowing for high controllability on both the qubit
transition frequency and the qubit-resonator coupling, in
USC [8,9] and potentially the deep strong coupling regime

[31] of light-matter interaction. Through ab initio numeri-
cal analysis, we discuss the main features of this scheme in
detail and show that the fidelity could reach 99.6%. This is
an important step in the reduction of resources requirement
for fault-tolerant quantum computation [32].
Design of a versatile flux qubit.—The junction array is

schematically depicted in Fig. 1. It consists of a six-
Josephson-junctions configuration, each one denoted by a
cross, coupled galvanically [8,9,33] to a coplanar wave-
guide resonator. This is characterized by a superconducting
phase difference �c and the electromagnetic field sup-
ported. The upper loop stands for a three-junction flux
qubit [30], while the additional loops will allow a tunable
quit-resonator coupling strength. We analyze this qubit
design step by step. First, we describe the potential energy

FIG. 1 (color online). Circuit-QED configuration of a six-
Josephson-junctions array coupled galvanically to a resonator
(bottom line). The flux qubit is defined by three Josephson
junctions in the upper loop threaded by an external flux �1.
Two additional loops allow a tunable and switchable qubit-
resonator coupling.
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coming from the inductive terms, which is the dominant
contribution. Second, we introduce the transmission line
resonator inserted with a Josephson junction in the central
line and introduce the superconducting phase slip �c
across the junction shared with the resonator. Third, we
add the capacitive terms which appear in the junctions and
obtain the full Hamiltonian of the system by using a
standard procedure. Finally, we identify two levels in the
degrees of freedom of the junction architecture, which will
define our qubit, and obtain the effective Hamiltonian to
describe the ultrafast two-qubit gate.

The potential energy due to the inductive terms is ob-
tained by adding up the corresponding Josephson poten-
tials Eð’kÞ ¼ �EJk cosð’kÞ, where EJk and ’k represent
the Josephson energy and the superconducting phase
across the kth junction, respectively. We assume EJ1 ¼
EJ2 � EJ, EJ3 ¼ �EJ, and EJ4 ¼ EJ5 ¼ �4EJ. In addi-
tion, around each closed loop the total flux has to be a
multiple of the flux quantum �0 ¼ h=2e or expressed in
terms of superconducting phases,

P
k’k ¼ 2�fj þ 2�n,

where we defined the frustration parameter fj ¼ �j=�0

(j ¼ 1; 2; 3). By using this quantization rule, the total
potential energy U, containing both the qubit energy and
the qubit-resonator interaction, reads

U

EJ
¼ �½cos’1 þ cos’2 þ � cosð’2 � ’1 þ 2�f1Þ

þ 2�4ðf3Þ cosð’2 � ’1 þ 2�~fþ �c Þ�; (1)

where �4ðf3Þ � �4 cosð�f3Þ, ~f ¼ f1 þ f2 þ f3=2, and
�c stands for the phase slip shared by the resonator and
f2 loop. Note that the junction at the central line introduces
a boundary condition that modifies the mode structure of
the resonator but without altering the inductive potential
(1). The parameters �, �4, and fj can be optimized to find

a suitable working point.
We introduce now the Hamiltonian of the interrupted

inhomogeneous transmission line resonator. After mapping
the nonuniform resonator into a sum of harmonic oscilla-
tors, the standard Hamiltonian described by the flux ampli-
tude c n and charge qn as its conjugate momentum is [21]

H r ¼
X

n

�
q2n

2 ~Cr

þ
~Cr

2
!2

nc
2
n

�

; (2)

where ~Cr ¼ Cr þ CJ6 is the modified resonator capaci-
tance due to the presence of the sixth Josephson junction
at the central line; see Fig. 1. The quantization procedure
yields

H r ¼
X

n

@!nðaþn an þ 1=2Þ; (3)

with !n ¼ kn=
ffiffiffiffiffiffiffiffiffiffiffi
L0C0

p
(C0 and L0 are the capacitance and

inductance per unit length, respectively), and kn ¼
ð2L0=LJÞð1�!2

n=!
2
pÞ cotðknlÞ, where !p ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
LJCJ

p
is

the plasma frequency of the junction and 2l is the length of
the central line.
For simplicity in the presentation, assume that the junc-

tions interact only with the first eigenmode of the resona-
tor. The modified superconducting phase slip�c is related
to the single-mode resonator variables as

�c ¼ �c 1ðaþ ayÞ; (4)

where �c 1 ¼ ð�1=’0Þð@=2!r
~CrÞ1=2. Here, ’0 ¼ �0=2�

is the reduced flux quantum,!r is the frequency of the first
eigenmode, and �1 ¼ u1ðx2Þ � u1ðx1Þ corresponds to the
difference between the first-order spatial eigenmode, eval-
uated at points shared by the resonator and the f2 loop.
The total Hamiltonian is obtained by including the ki-

netic terms of the qubit and the Hamiltonian of the reso-
nator

H ¼ 4AEcðn21 þ n22Þ þ 8BEcn1n2 þH r

þ 2e
C

Cr

qnðn1 � n2Þ þUð’1; ’2Þ; (5)

where Ec ¼ e2=2CJ is the charging energy and A, B, and C
are functions of system parameters [34], such as junction
size and phase slip magnitude. The degrees of freedom of
the junction architecture are (’1, ’2), and their conjugate
momenta are the numbers (n1, n2) of Cooper pairs in the
boxes.
In order to define a qubit within the junction architec-

ture, we diagonalize the term of the Hamiltonian contain-
ing only the junctions. The two lowest energy eigenstates
are labeled as the eigenstates of �z, and the two-
dimensional subspace spanned by them describes the qubit.
Furthermore, since �c 1 � 1 in general, we expand the
potential (1) up to the second order in �c . This gives rise
to the first-order and second-order qubit-resonator induc-
tively coupling. Finally, after projecting the interaction
terms also into the qubit basis, the Hamiltonian reads

H ¼ @!q

2
�z þ @!ra

yaþH int (6)

with the effective interaction Hamiltonian

H int ¼ 2EJ�4ðf3Þ
X

m¼1;2

ð�c Þm X

�¼x;y;z

cm�ð�;�4; f1; f2Þ��;

(7)

cm�ð�;�4; f1; f2Þ being the controllable magnitudes of the

longitudinal and transverse coupling strengths for mth-
order interaction. Here we have ignored the capacitive
coupling, as it is orders of magnitude smaller than the
inductively coupling.
Numerical analysis.—We provide ab initio numerical

examples to show the functionality of our setup. First, we
study the properties of the inhomogeneous transmission
line resonator obtained by inserting the sixth Josephson
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junction on the central line. The eigenfrequencies !n and
eigenmodes unðxÞ can be found numerically and calculated
with independence of the qubit Hamiltonian [21]. In fact,
considering a resonator of impedance Z� 50 �, capaci-
tance Cr � 850 fF, and a Josephson capacitance CJ6 �
10 fF, we estimate the first mode of the resonator with
frequency !r=2�� 7 GHz, which leads to a phase slip
magnitude �c 1 ¼ 0:1218. These values determine the
qubit-resonator coupling strength. Second, we perform
the numerical study of the total Hamiltonian (5), which
shows that, when external fluxes satisfy f2 þ f3=2 ¼ 0:5,
both c1y and the second-order coupling are negligible. This

reduces the interaction Hamiltonian to

H int ¼ @gðaþ ayÞðcz�z þ cx�xÞ; (8)

with the effective coupling strength g ¼ 2EJ�4ðf3Þ�c 1=@
and cz;x � c1x;z.

In Figs. 2(a) and 2(b), we plot cz and cx as a function of
the qubit junction size � and the frustration parameter f1.
They clearly show another characteristic of the setup, that
is, the switching from transversal to longitudinal couplings
depending on the external flux�1 [19]. In particular, when
selecting a qubit junction size � ¼ 1:2 and f1 ¼ 0:505, we
obtain a large (small) contribution of longitudinal (trans-
versal) coupling—see Fig. 2(c), where cz and cx are de-
picted for a parameter f3 ¼ 0 and f3 ¼ 1.

From the diagonalization of qubit Hamiltonian for
different values of the frustration parameter f3 ¼
f0; 1; 0:5g, we estimate a qubit frequency !q=2��
f10:94; 11:25; 10:99g GHz [see Fig. 2(d)]. Furthermore,
by considering a junction size �4 ¼ 0:058, the qubit-
resonator coupling strength is g=!r ¼ f0:446;�0:446; 0g,
reaching the USC regime. It is noteworthy to mention that
our setup allows us to turn on or off the coupling g as well
as to change its sign, operations that may be carried out in
times of the order of 0.1 ns or even less [35,36].
The ratio g=!r could change at will without affecting

significantly the qubit properties required for the proposed
protocol. For instance, for a junction size �4 ¼ 0:12, a
phase slip magnitude �c 1 ¼ 0:0768 and a resonator fre-
quency !r=2�� 8:01 GHz (obtained from a central
Josephson capacitance CJ6 � 17 fF), one obtains g=!r ¼
0:509. Also, with other choices of parameters, we can
move from the USC to the deep strong coupling regime
and even the ratio of transversal to longitudinal coupling
could be tuned. These examples, and particularly the
model introduced by Eq. (8), will be the basis to develop
protocols for ultrafast two-qubit gates.
Ultrafast two-qubit gate.—The external tunability of the

previous circuit is now exploited to propose an ultrafast
protocol for a two-qubit gate [22]. In Ref. [26], a scheme
was studied where a two-qubit CPHASE gate is produced by
alternating between positive and negative values of the
coupling strength g for each qubit. In our architecture,
this can be done simply by changing the flux f3 from 0
to 1; however, this action will also increase the value of the
undesired transversal coupling in Hamiltonian of Eq. (6).
For instance, in the case of a junction size �4 ¼ 0:12, we
find g=!r ¼ f0:509;�0:509g and cx ¼ f0:040; 0:135g for
f3 ¼ f0; 1g.
Hence, a more suitable protocol for the proposed archi-

tecture consists of the following: Step 1.—The coupling g1
is maximized (fð1Þ3 ¼ 0), whereas g2 is made exactly zero

by tuning fð2Þ3 ¼ 0:5. The system evolves for a period

!rt1 2 ð0; �=2�. Step 2.—The coupling g2 is maximized

(fð2Þ3 ¼ 0), whereas g1 is made exactly zero by tuning

fð1Þ3 ¼ 0:5. The system evolves for a period !rt2 ¼ ��
!rt1. Step 3.—Repeat step 1. Step 4.—Repeat step 2.
We study first the ideal case, in which the transversal

component of the coupling in Eq. (6) is negligible, which
could be achieved by tuning the fluxes f1 ¼ 0:505 (or
larger) of each qubit. Then, the two-qubit Hamiltonian is

H ¼ X

i

@!qi

2
�ðiÞ

z þ @!ra
ya�X

i

@giðaþ ayÞ�ðiÞ
z :

(9)

Under this Hamiltonian, the unitary evolution operator Ui

corresponding to each step is

FIG. 2 (color online). (a),(b) Couplings strength cz and cx as a
function of the qubit junction size � ¼ EJ3=EJ1, and the external
frustration parameter f1 ¼ �1=�0, where �0 is the flux quan-
tum, for a frustration f3 ¼ 0. (c) Coupling strengths for a qubit
junction size � ¼ 1:2 and for values f3 ¼ 0 and f3 ¼ 1.
(d) Qubit spectrum for values f3 ¼ f1; 0; 0:5g. In this simula-
tion we have considered EJ=h ¼ 221 GHz and a junction size
�4 ¼ 0:058.
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U1;3 ¼ e�i½ð!q1"�
ð1Þ
z þ!q2#�

ð2Þ
z Þ=2�t1

� e�i!rt1a
yaD

�
g1
!r

ðei!rt1 � 1Þ�ð1Þ
z

�

;

U2;4 ¼ e�i½ð!q1#�
ð1Þ
z þ!q2"�

ð2Þ
z Þ=2�t2

� e�i!rt2a
yaD

�
g2
!r

ðei!rt2 � 1Þ�ð2Þ
z

�

; (10)

whereDð��zÞ ¼ expðf�ay � ��ag�zÞ is a controlled co-
herent displacement of the field and !qi" and!qi# stand for
the value of the qubit frequency when gi is maximum and

zero, respectively. Finally, by using Dð�ÞDð�Þ ¼
eiImð���ÞDð�þ �Þ and e�i�ayaDð�Þei�aya ¼ Dð�e�i�Þ,
the gate U ¼ Q

iUi is

U ¼ e�ið!q1"t1þ!q1#t2Þ�ð1Þ
z e�ið!q2#t1þ!q2"t2Þ�ð2Þ

z

� e4i sin!rt1ðg1g2=!2
r Þ�ð1Þ

z �ð2Þ
z : (11)

This gateU is equivalent to a CPHASE quantum gate [1],
up to local unitary operations, provided
4 sin!rt1g1g2=!

2
r ¼ �=4 (notice that this condition re-

quires gi=!r to be in the ultrastrong regime). In the case
of having a junction size�4 ¼ 0:12, for which the coupling
strength takes a value of g1=!r ¼ g2=!r ¼ 0:509 and
!r � 2�� 8:01 GHz, then !rt1 ¼ 0:86 and the total gat-
ing time will be tgate ¼ 2�=!r ¼ 0:12 ns. This is much

shorter than typical coherence times in these systems,
which are around 1 �s.

Deviations from perfect fidelity are expected if one
accounts for undesired transverse coupling in Eq. (6). For

an initial state where both qubits are in state jþi ¼ ðjgi þ
jeiÞ= ffiffiffi

2
p

and the resonator in the vacuum, we can compute

the fidelity of the state generated assuming that cðiÞx ¼
0:040 for each qubit at fðiÞ3 ¼ 0. The fidelity of this state,

with reduced density matrix �, as compared to the ideal
jc ihc j, for which transverse coupling is neglected,
amounts to F ¼ hc j�jc i � 0:996. This result is un-
changed even if we include up to the third cavity mode
in our ab initio calculation. For the sake of simplicity, we
have considered instantaneous changes in the value of the
fluxes f3. In this sense, the scheme can be easily adapted to
account for smooth time-dependent profiles in the value of
the coupling strength of both qubits, provided the adequate
interaction time and number of iterations and that no over-
lap between the pulses occurs. Indeed, switching frequen-
cies of about 10–80 GHz are already available [35,36].
This should allow the experimental realization of a high-
fidelity ultrafast CPHASE gate with subnanosecond opera-
tion time.

Discussion.—Given the proposed CPHASE gate, based on
the tunable qubit-resonator coupling in USC, we may
consider the following extensions. (i) Multiqubit entangle-
ment and gate operations, such as realization of three-qubit
Toffoli gates in the USC regime, faster than other schemes

working in the strong coupling regime [17,18,37]. (ii) With
the advantage of switchable coupling in both strength and
orientation, we may think of generating Ising-type
Hamiltonians for qubit arrays. (iii) By controlling the
geometric-related flux values, we can increase the higher-
order couplings and thus study the nonlinear dynamics in
the USC regime. (iv) The adjustable coupling also allows
us to couple to slower measurement devices.
Conclusion.—We have proposed a realistic scheme for

implementing an ultrafast two-qubit CPHASE gate in current
circuit-QED technology. The gate may work at subnano-
second time scales with fidelity F ¼ 0:996. This proposal
may lead to a significant improvement in the operating
time with respect to standard circuit-QED scenarios, as
well as microwave or optical cavity QED systems, together
with the reduction of the large resource requirement for
fault-tolerant quantum computing.
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