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Using computer simulations, we show that lipid membranes can mediate linear aggregation of spherical

nanoparticles binding to it for a wide range of biologically relevant bending rigidities. This result is in net

contrast with the isotropic aggregation of nanoparticles on fluid interfaces or the expected clustering of

isotropic insertions in biological membranes. We present a phase diagram indicating where linear

aggregation is expected and compute explicitly the free-energy barriers associated with linear and

isotropic aggregation. Finally, we provide simple scaling arguments to explain this phenomenology.
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Lipid membranes have unique mechanical properties
that are crucial for many biological processes, including
cellular recognition, signal transduction, inter- and intra-
cellular transport, and cell adhesion. Most of these pro-
cesses require interactions of a lipid bilayer with a variety
of nano- and microsize objects, such as proteins, DNA,
viruses, and other biomacromolecules. Along with its fun-
damental importance, understanding the interactions of
fluid membranes with nano-objects is a crucial component
in targeted drug-delivery design and in nanotoxicity stud-
ies. It also has intriguing implications for medical imaging
[1] and for the development of biosensors and functional
biomimetic materials [2,3].

Lipid membranes are typically very flexible, and under
thermal perturbations they undergo surface deformations
that are significantly larger than their thickness. Because of
such a flexibility, they can easily be deformed when inter-
acting with nanoparticles that can be either adsorbed on the
membrane surface or embedded in the lipid bilayer. The
resulting membrane deformations may in turn mediate
interactions between the membrane-bound objects. This
phenomenon has been extensively studied over the past
two decades, both experimentally and theoretically. Most
of the previous studies focused on the interactions between
embedded inclusions. A bending-mediated Casimir-like
isotropic interaction was initially proposed as a possible
mean of driving protein aggregation on a lipid bilayer
[4,5]. Later papers have shown that a more accurate ac-
counting of the local constraints imposed by nonisotropic
inclusions on the membrane can lead to additional complex
terms whose sign and functional form are very much
dependent on how the objects anchor to the surface; see,
for instance, [6–10], and references therein. Hydrophobic
mismatch [11], difference in curvature between the mem-
brane and the embedded objects [12–14], or line tension
between the lipids and the inclusions [15] can also induce
domain formations.

Adsorption or inclusion of objects comparable in size to
the membrane thickness (� 5 nm) greatly perturbs the
local packing of the lipids, leading to quite complex

phenomena dependent on the molecular details of the
membrane-object interactions. When considering larger
objects, on the contrary, it becomes feasible to describe
the membrane as a continuous surface and coarse-grain its
interactions with the nanoscopic objects with generic bind-
ing potentials. Here we are interested in membrane-driven
interaction between adsorbing colloidal particles that are
more than 1 order of magnitude larger than the membrane
thickness. Despite their structural complexity, for suffi-
ciently large scales the behavior of lipid membranes can
be described by a small number of elastic parameters that
capture their response to deformation; a bending rigidity
�b of the order of 10kBT and a small surface tension
� � 10�2–10�3 pN=nm are the most important ones.
Both can be altered either by dispersing within the bilayer
additional molecular components or by changing the lat-
eral forces or osmotic pressure applied on the membrane.
In this Letter, we show that spherical nanoparticles

adhering to fluid membranes can self-assemble into a
variety of two-dimensional aggregates. Significantly, for
intermediate and biologically relevant values of the bend-
ing rigidity, we find that particles preferentially arrange
into linear and flexible aggregates. This result is in striking
contrast with most of the theoretical studies on membrane
inclusions that predict isotropic aggregation when the em-
bedding object imposes an isotropic deformation on the
surface. Linear aggregation is expected only for suffi-
ciently anisotropic wedgelike local deformations [7], and
this is clearly not the case for spherical nanoparticles. We
find that the key to understanding the stability of linear
versus isotropic aggregates resides in the interplay between
bending and binding energies of the nanoparticles. The
latter term, usually and correctly neglected when dealing
with embedded nanocomponents, does indeed play a major
role in the structural morphology of the aggregates formed
by nonembedded adhering components.
It should be stressed that stringlike formations very

similar to those we present here have been observed ex-
perimentally in several systems. For instance, colloidal
particles bound to giant phospholipid vesicles via
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streptividin-biotin bonds or by electrostatic physisorption
form one-dimensional ringlike assemblies [16]. Similarly,
the cationic lipid-DNA complexes of low net charge as-
semble into linear colloidal aggregates when adsorbed to
the cell membrane [17]. However, to the best of our knowl-
edge, this phenomenon has never been explained nor
studied in detail. In this Letter, we use a combination of
numerical simulations and scaling arguments to detail the
physical origin behind it.

We performed Monte Carlo simulations of planar and
spherical fluid membranes interacting with adsorbing
nanoparticles. The membrane is modeled by using a simple
one-particle-thick solvent-free model and consists of N
hard spherical beads, of diameter �, connected by flexible
links to form a triangulated network [18–20] whose con-
nectivity is dynamically rearranged to simulate the fluidity
of the membrane. The membrane bending energy acts on
neighboring triangles and has the form

Eij ¼ �b

2
ð1� ni � njÞ; (1)

where �b is the bending rigidity and ni and nj are the

normals of two triangles i and j, respectively, sharing a
common edge. The cost associated with area changes is
included via the energy term E� ¼ �A, where � is the

tension of the surface and A is its total area. A nanoparticle
is modeled as a sphere of diameter �np ¼ Z�, with Z ¼ 3,

4, or 6. Excluded volume between any two spheres in the
system (nanoparticles and surface beads) is enforced with a
hard-sphere potential. Finally, the nanoparticle-to-surface
adhesion is modeled via a generic power-law potential
between the nanoparticles and the surface beads defined as

VattðrÞ ¼ �D0

�
�M

r

�
6

(2)

with �M ¼ ð�þ �npÞ=2 and a cutoff at rcut ¼ 1:5�M.

Following Ref. [21], simulations of the planar membrane
were carried out in the N�T ensemble, while the NVT

ensemble was used for the spherical membrane. In each
simulation, the number of nanoparticles is held constant,
and the surface tension is set to � ¼ 3kBT=�

2. For � �
30–50 nm we have nanoparticles of diameter �np ¼
100–200 nm and surface tensions ��10�2–10�3 pN=nm.
We begin by computing the phase behavior of the system

for different values of the surface bending rigidity �b and
nanoparticles’ adhesive energy D0. The results are sum-
marized in the left and middle panels of Fig. 1 and report
the structure of the aggregates observed for each pair
½�b;D0� in the case of the planar geometry. A gas phase
occurs when D0 is too weak for the particles to deform the
membrane. In this phase, particles are just lightly bound to
the surface, are highly mobile, and have a certain proba-
bility of detaching from it. An arrested phase occurs for
large values ofD0. In this case, particles bind very strongly
to the membrane, resulting in large local deformations that
heavily limit their mobility over the surface. This typically
leads to configurations that are kinetically trapped or even
to nanoparticle engulfment. Three ordered phases occur for
moderate values of D0. Each of the three phases spans a
range of �b values. For small values of the bending rigidity,
particles create well defined deep-spherical imprints in the
membrane and organize into ordered hexagonal arrays
(H1). Low cost in bending energy and high gain in surface
binding allow for these deep deformations. In this phase,
the nanoparticles are not in direct contact with each other
but are separated by the pinched parts of the membrane.
Close packing maximizes sharing of the pinched regions
between neighboring nanoparticles, thus maximizing the
surface-to-nanoparticle contact area. An identical result is
obtained when repeating the simulations on the spherical
membrane and is reminiscent of the experimentally ob-
served two-dimensional hexagonal crystal formed by nega-
tively charged particles on positively charged surfactant
vesicles reported in Ref. [22]. Even in this case, the col-
loids are extensively wrapped by the membrane and are not
in direct contact with each other.

FIG. 1 (color online). Left panel: Phase diagram of particle self-assembly on a fluid surface in terms of the surface bending rigidity
�b and particle binding energy D0. Middle panel: The snapshots show typical aggregates in the H1, L, and H2 phases in a top-to-
bottom order and the deformation pattern they leave on the membrane. The membrane area is A ’ ð40� 40Þ�2, the nanoparticle size
�np ¼ 4�, and their surface fraction � ¼ 0:27. Right panel: Snapshots of the linear aggregates on the spherical membrane. The upper

two snapshots show the system of R ’ 15�, �np ¼ 4�, and � ¼ 0:11, and the bottom snapshot depicts R ’ 45�, �np ¼ 3�, and

� ¼ 0:16.
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For biologically relevant values of �b, our nanoparticles
create smooth channel-like distortions on the membrane
and self-assemble into linear aggregates (L) not unlike
those predicted for anisotropic membrane inclusions [7].
Although we have not computed a structural phase diagram
for our vesicle model, we find that the simulations on the
vesicle performed at different nanoparticle concentrations
and vesicle radii lead to analogous results. Here particles
form sinuous linear patterns that tend to follow the equa-
torial lines of the vesicle. Snapshots from our simulations
are shown in the right panel of Fig. 1. This phase strikingly
resembles the linear aggregates of colloidal particles on
giant phospholipid vesicles obtained in Ref. [16].

For very large values of �b, the nanoparticles reorganize
into the familiar hexagonal lattice; however, unlike what
happens for the small �b aggregates, the membrane now
remains almost completely flat, and the nanoparticles are
in contact with each other (H2). Because of its high stiff-
ness, particles can only weakly deform the membrane to
gain in binding energy; as a result, the binding energy is
minimized by recruiting the largest number of membrane
beads in the vicinity of the nanoparticles. This effectively
drives the crystallization of the region of the membrane
that directly interacts with the nanoparticles, creating a line
tension between crystalline and fluid membrane regions
that is minimized when isotropic aggregation takes
place [13,14].

As mentioned before, the formation of linear aggregates
is quite surprising. To ensure that our results are not
affected by the triangulation underlying the definition of
our membrane model, we repeated our simulations by
using the coarse-grained, but tether-free, model proposed
by Yuan et al. [23]. This model also accounts for possible
topological changes in the surface; however, the elastic
properties of the membrane are not fed to the system in the
form of parameters of an elastic energy but are encoded
into the molecular details of the anisotropic pair potentials
between the effective building blocks of the membrane and
need to be extracted by analyzing the fluctuations spectrum

of the surface [23] or by other means. It is comforting to
report that no qualitative difference was found on the
overall phenomenology of the phase diagram: Linear ag-
gregates do indeed form and are not an artifact of our
model. We also checked that linear aggregates do not
form when limiting the area of the particles’ binding region
to enforce a finite (constant) contact angle between the
particles and membrane. This case is basically equivalent
to enforcing isotropic regions with intrinsic curvature,
mimicking, for instance, the local perturbation of a protein,
in a lipid bilayer for which isotropic aggregation is ex-
pected [14].
To understand why linear aggregates become more fa-

vorable for moderate bending rigidities, we placed three
nanoparticles A, B, and C in linear formation and at a
kissing distance over a planar membrane and calculated
the free-energy cost required to disrupt the linear arrange-
ment. The idea is to keep in place particles A and B and
force particle C to form an angle ’0 between the vector
connecting particles A and B and that connecting particles
B and C while keeping the vectors’ lengths unaltered.
Using the umbrella sampling method [24], we can recon-
struct piecewise the probability that the trimer arranges
according to any of the explored angles, which in turn gives
us access to the free-energy difference �F ¼ Fð’Þ �
Fð�Þ. All simulations were repeated for different values
ofD0 and two different ranges of the binding potential. The
results are shown in Fig. 2(a) and undoubtedly tell us that
in this region of the phase diagram the linear configuration
is the most stable one, with the close-packed compatible
configuration (’0 ¼ �=3) sitting in a metastable shallow
minimum of the free-energy curve separated from the
linear configuration (’0 ¼ �) by a significant barrier.
The height of the barrier depends on the exact parameters
but is typically larger than 4kBT inside the linear region of
the phase diagram. Figure 2(b) shows the free energy as a
function of particle separation when the third particle
approaches the other two from infinity, in either the linear
or perpendicular alignment, as depicted in the insets in

FIG. 2 (color online). (a) Angular free-energy profile for three nanoparticles bound to the membrane at different values of binding
constant D0 and interaction range rcut. (b) Free energy as a function of the separation when a third particle approaches a fixed
dimer along the direction of the dimer’s axis (dashed line) and perpendicular to it (full line). In both cases we used �b ¼ 20kBT and
�np ¼ 3�.
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Fig. 2(b). When the third particle approaches the dimer to
form a linear aggregate, the free energy (when particles are
sufficiently close) decreases monotonically down to a
minimum at contact. When the third particle approaches
the dimer from a direction that is perpendicular to the
dimer’s axis, we observe a repulsive free-energy barrier
that precedes a shallow minimum at contact. Remarkably,
the range of the repulsion is felt as far as three nanoparticle
diameters (up to 3 times the range of the attractive part),
revealing correlations in the three-body interactions that
are significantly longer than the ones expected from a
simple Casimir effect [6,7].

To understand the unexpected stability of the linear
aggregates over the close-packed structures in the regime
where linear aggregation occurs, we measured the energy
of the system associated with linear and hexagonal aggre-
gates. The left-hand side of Fig. 3 shows explicitly how the
total energy difference between linear and hexagonal ag-
gregates, computed for the same values of �,D0, and kb, as
a function of particle number N, is partitioned between the
bending ðFL � FHÞbend and the binding ðFL � FHÞbind con-
tributions. This analysis reveals that, despite the smaller
bending cost, hexagonal aggregates provide a fairly small
gain in binding energy when compared to linear aggre-
gates, and this leads to a net energy balance that favors the
latter. It is worth mentioning that we monitored the differ-
ence in free energy due to the surface tension between the
two configurations and found it to be indeed negligible. We
also checked that linear aggregates form for our largest
nanoparticles, Z ¼ 6.

To rationalize these numerical data, we offer the follow-
ing scaling argument. A quick look at the typical surface
deformations in this region of the phase diagram (see
snapshots on the right-hand side of Fig. 3) suggests that
in either linear or hexagonal configuration the contribution
to the system energy can be split into two parts. The first
part comes from the overall deformation of the membrane

due to the collective arrangement of the particles. The
second part comes from the shallow surface indentations
(corrugations) produced by each particle on top of the
overall deformation. Let us assume that the energy due to
the corrugation is fairly independent of the overall arrange-
ment of the aggregates. We can think of it as a particle self-
energy e0 that is constant for a given �B, �, and D0. The
total self-energy is then E0 ¼ e0N.
When particles arrange into linear structures (L), they

generate a channel-like profile in the membrane with
length proportional to the number of the nanoparticles N
and width proportional to �np. The bending energy of the

channel can be estimated by using the standard elastic
energy �B

2 ðA=R2Þ [25] with A being the area and 1=R being

the constant curvature of the deformation. Ignoring the
energy due to the contribution of the surface tension and
subtracting the contribution of the particles’ self-energy,
we can write the total free energy of the channel as FL �
E0 � 2��ð�B

2 �D0�
2
npÞN, where 0<�< 1 is a parame-

ter that accounts for the degree of surface wrapping per
nanoparticle and is related to the overall height of the
channel. Close-packed hexagonal (H) arrangements form
a flat, two-dimensional imprint of lateral size proportional

to
ffiffiffiffi
N

p
. In this case, apart from a geometrical prefactor, the

free energy due to the rim of the imprint scales as FH �
E0 � ��½�B

2 ð1þ N�1Þ �D0�
2
np�N1=2. In fact, here the

area is proportional to the length of the rim and grows asffiffiffiffi
N

p
, and the N�1 term accounts for the small bending cost

associated with the in-plane curvature of the rim kB=2c
2
0A

with c0 � N�1=2. Structural stability requires both free
energies to be negative (D0 >

�B

2�2
np

for large N), which

results in FL < FH, for sufficiently large values of N,
making the linear aggregates more stable than the isotropic
ones. In other words, the gain in binding energy over-
whelms the larger cost in bending.
In conclusion, we have computed a phase diagram

showing the different aggregates formed by nanoparticles
adsorbing onto a lipid bilayer as a function of the surface
bending rigidity and nanoparticles adhesive energy. Our
main result is that, for a wide range of bending rigidities
�b � 10–100kBT, nanoparticles can organize into linear
aggregates—provided the binding energy is sufficiently
large.
Although linear aggregates are expected to form on

elastic (polymerized) surfaces due to the global constraints
imposed on the surface deformations by the stretching
rigidity Ks (at least in the large Ks limit) [26], for fluid
membranes Ks ¼ 0. Our result is therefore quite different
than the expected, and usually assumed, isotropic aggre-
gation mediated by either local isotropic deformations of
the surface or due to hydrophobic mismatch. The binding
energy of the nanoparticles, the missing ingredient in
studies of aggregation of membrane inclusions, is the key
to rationalize this phenomenology. We hope our work will

FIG. 3 (color online). Left panel: Difference in bending
ðFL � FHÞbend and binding ðFL � FHÞbind energies between lin-
ear and hexagonal aggregates as a function of particle number N
at �b ¼ 20kBT, D0 ¼ 10:9kBT, and �np ¼ 3�. The dashed line

indicates the total energy difference between the two configura-
tions. Right panel: Typical membrane profiles underneath the
aggregates in this regime.
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induce further analysis of membrane-mediated interactions
between adhering nanoparticles.
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