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The Fermi surface of graphite has been mapped out using de Haas–van Alphen (dHvA) measurements

at low temperature with in-situ rotation. For tilt angles � > 60� between the magnetic field and the c axis,

the majority electron and hole dHvA periods no longer follow a cosð�Þ behavior demonstrating that

graphite has a three-dimensional closed Fermi surface. The Fermi surface of graphite is accurately

described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the

Slonczewski-Weiss-McClure trigonal warping parameter �3 is significantly larger than previously

thought.
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Graphite consists of Bernal stacked graphene layers with
a weak inter layer coupling which leads to an in-plane
dispersion which depends on the momentum in the
direction perpendicular to the layers, kz. Graphite is a
semi metal with the carriers occupying a small region
along the H-K-H edge of the hexagonal Brillouin zone.
The Slonczewski-Weiss-McClure (SWM) Hamiltonian
with its seven tight binding parameters �0; . . . ; �5;�, is
based on group theoretical considerations and provides a
remarkably accurate description of the band structure of
graphite [1,2]. In a magnetic field, when trigonal warping
is included (�3 � 0) levels with orbital quantum number n
couple to levels with orbital quantum number nþ 3 and
the Hamiltonian has infinite order. However, the infinite
matrix can be truncated as the eigenvalues converge
rapidly [3]. The validity of the SMW-model, has been
extensively verified using many different experimental
techniques, e.g., Shubnikov–de Haas (SdH), de Haas–van
Alphen (dHvA), thermopower, magneto-transmission, and
magnetoreflectance measurements [4–16]. However, re-
cently claims [17,18] for the observation, in electrical
transport measurements, of massless two-dimensional
(2D) charge carriers with a Dirac-like energy spectrum
have caused much controversy [19–21].

The Fermi surface of graphite has electron and hole
majority carrier pockets with maximal extremal cross sec-
tions at kz ¼ 0 (electrons) and kz � 0:35 (holes). For both
types of charge carriers the in-plane dispersion is parabolic
(massive fermions). Only at the H point (kz ¼ 0:5) the in-
plane dispersion is linear, similar to that of charge carriers
in graphene (massless Dirac fermions). At the H point,
there are two possible extremal orbits. A minimal (neck)
orbit of the majority hole carriers, which gives rise to
minority carrier effects (� surface) and a maximal ex-
tremal orbit of the small ellipsoidal minority hole pocket
(� surface) which results from the intersection of the
two majority hole ellipsoids. The existence of the three
minority carrier pockets at the K point, the so called

outrigger pieces, was proposed by Nozières [22], however
their existence is considered to be unlikely due to the rather
large value of �3, the SWM trigonal warping parameter,
required.
In this Letter, we present a complete map of the Fermi

surface of natural graphite obtained from dHvA measure-
ments at low temperature (T � 0:4 K) with in situ rotation.
For tilt angles � < 60�, the dHvA periods of both the
electrons and holes follow a cosð�Þ dependence. While
such a quasi-2D behavior is well established in the litera-
ture, previous dHvA measurements [6], were unable to
distinguish between a highly elongated 3D ellipsoid and
a cylindrical 2D Fermi surface. Our results at larger tilt
angles demonstrate unequivocally that graphite has a 3D
closed Fermi surface which is accurately described by
highly elongated ellipsoids provided the spin splitting is
included. A comparison of our data with the full SWM
calculations allows us to refine the SWM tight binding
parameters, notably �3 is found to be significantly larger
than previously thought.
For the dHvAmeasurements we used a mm-size piece of

natural graphite, which was mounted on a CuBe cantilever
which forms the mobile plate of a capacitive torque meter.
The capacitive torque signal was measured with a lock-in
amplifier using conventional phase sensitive detection at
5.3 kHz. The measurements were performed using a 16 T
superconducting magnet and a dilution fridge, equipped
with an in situ rotation stage. Figure 1(a) shows the torque
� as a function of the total magnetic field from B ¼
0–0:21 T for a tilt angle � ¼ 16�. The torque shows the
expected dependence, �ðBÞ / �B2 (broken line), since
� ¼ MB sinð�Þ and the magnetization M depends linearly
on the magnetic field. Superimposed on the large mono-
tonic background, small quantum oscillations are clearly
visible, which reflect the oscillatory magnetization of the
system as Landau levels pass through the Fermi energy.
The dHvA oscillations can be better observed in the
oscillatory torque (�osc). Here the monotonic background
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has been removed by subtracting a smoothed (moving
window average) data curve. The torque � / sinð�Þ so
that we cannot directly access the quantum oscillations
in perpendicular field. In order to compare with our pre-
vious magnetotransport measurements we use the low
angle � ¼ 16� data writing B? ¼ B cosð�Þ. Figure 1(a)
shows �oscðBÞ.

The phase and the frequency of the dHvA oscillations,
were extracted from a Fourier analysis. The fundamental
frequencies Be

F? ¼ 6:30� 0:1 T and Bh
F? ¼ 4:61� 0:1 T

for electrons and holes, respectively, are obtained from
the amplitude of the Fourier transform of d�osc=
dBð1=B cosð�ÞÞ [see Fig. 1(b)]. In Figs. 1(c) and 1(d)
we plot the phase shift function Kð’;B?Þ ¼
<½expði’ÞfðB?Þ� ¼ cosð’� ’0ÞFðB?Þ as a function of
the perpendicular magnetic field and the phase. The fun-
damental frequency and the phase ’0 can be found from
the maxima in the ’-B plane. The phase values in units of
2� obtained are ’e

0¼�ð0:5�0:2Þ and ’h
0 ¼�ð0:5�0:2Þ.

The phase ’0 ¼ �� � with � ¼ 1=2 for massive
Fermions or � ¼ 0 for massless Dirac fermions. For a
3D Fermi surface the curvature along kz gives � ¼ �1=8
for minimum or maximum extremal cross sections. In
contrast a cylindrical 2D Fermi surface gives � ¼ 0. We
can therefore conclude, that within experimental error,
both the electrons and holes are massive Fermions with a
parabolic energy spectrum (i.e., � ¼ 1=2). In Fig. 1(e) we
show the oscillatory torque �oscðBÞ in the B k ab configu-
ration (� ¼ 90�). The B k ab configuration can be found
very precisely (�� < 0:1�), since the magnetization
background changes sign at � ¼ 90�. Well pronounced

quantum oscillations are observed demonstrating un-
equivocally that the Fermi surface of graphite is 3D and
closed.
In order to map out the Fermi surface, we have per-

formed systematic angle dependent measurements. In
Fig. 2(a) we plot the amplitude of the Fourier transform
of �oscð1=BÞ as a function of the period of the oscillations
and the tilt angle �. The hole and electron features, together
with the hole harmonic, can clearly be distinguished. For
angles � < 60�, the dHvA period for both electrons and
holes follow the well documented [5,6] cosð�Þ dependence.
Such a behavior is characteristic of either a 2D material or
very anisotropic material with an almost perfectly cylin-
drical Fermi surface. We can distinguish between these two
scenarios at higher tilt angle. The noncylindrical nature of
the Fermi surface is clearly revealed for � � 60� where

FIG. 2 (color online). (a)–(b) Color plot: Amplitude of the
Fourier transform of �oscð1=BÞ as a function of the period of
the oscillations and the tilt angle (�). The calculated dHvA
periods for ellipsoidal electron and hole Fermi surfaces are
also shown for holes (solid lines), the hole harmonic (thin solid
lines), and electrons (dot-dash). The hole neck orbits with and
without breakdown are shown as dotted lines. Woollam’s minor-
ity carrier data [24] is shown as symbols. The dashed line is the
prediction for an ellipsoid. (c) Woollam’s minority carrier data
plotted over an extended range. The prediction for an ellipsoid
(dashed line) and for a neck orbit (dotted line) are shown for
comparison.

FIG. 1 (color online). (a) The torque � and oscillatory torque
�osc versus total magnetic field for � ¼ 16�. (b) Fourier trans-
form of d�osc=dBð1=B cosð�ÞÞ. (c)–(d) The phase shift function
<½expði’ÞfðB?Þ� as a function of the phase and frequency.
(e) Oscillatory torque �oscðBÞ for B k ab (� ¼ 90�).
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deviations from a cosð�Þ behavior, are observed. Namely,
for � � 75� [see Fig. 2(b)], the slope of the dHvA periods
for both the electrons and holes features changes dramati-
cally reaching almost zero close to � ¼ 90� [see Fig. 2(b)].
In addition, the hole feature clearly splits into two around
� ¼ 75� due to a lifting of the spin degeneracy.

In a first approach the Fermi surface of graphite has
been approximated using highly elongated ellipsoids.
According to the Lifshitz-Onsager relation [23], the fun-
damental frequencies BF ¼ @A=2�e are directly propor-
tional to the extremal cross sectional areas A of the Fermi
surface. For the maximal extremal orbits the area is given
by the intersection of a plane with the ellipse,

BF / A ¼ �ab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2�þ ða2=b2Þcos2�
q

; (1)

where a and b are the semimajor and semiminor axes of the
ellipse and � is the angle between the magnetic field and
the c axis of the graphite crystal. For elongated ellipsoids
(a=b � 5) this follows very closely �b2= cos� for � < 60�
i.e. follows closely the behavior of a 2D cylindrical Fermi
surface.

For our data, matters are further complicated by the
observed spin splitting for � > 70�. In order to include
spin splitting in our simple model, we note that the oscil-
latory term can be written as,

�osc / cos

� jEfj
ð@em� � g��BÞB

þ	

�

	 cos

�

B"#
F

B
þ	

�

; (2)

where Ef is the Fermi energy, m� is the angle dependent

effective mass, g� is the Landé g factor, �B the Bohr
magneton and 	 is a phase factor. From Eq. (2) the
frequency in the absence of spin splitting is BF ¼
jEfjm�=@e. Thus, we have a simple relation between the

frequency (period) of oscillations calculated for the ellip-
soid and the expected frequencies when spin splitting is
included,

1=B"#
F ¼ 1=BF � g��B=2jEfj (3)

so that the expected splitting of the period is simply
�g��B=2jEfj independent of the angle �. The Fermi en-

ergy is Eh
F ’ �0:025 eV for holes and Ee

F ¼ Eh
f � 2�2 ’

0:0246 eV for electrons with �2 ¼ �0:0243 eV [3]. A
reasonable fit to the observed splitting is obtained with
g� ¼ 2:4 for electrons and g� ¼ 4:0 for holes. The value
for holes is considerably larger than the value of g� ¼ 2:5
found for both electrons and holes from magnetotransport
[14]. It is not clear if this is due to the movement of the
Fermi energy which is not taken into account in our analy-
sis, or if g� is really larger for holes. The cross sectional area
of the ellipsoids are obtained by fitting to the majority
electron and hole frequencies at � ¼ 0� and at high tilt
angles � > 70�. The parameters used are summarized in
Table I. The results of such a fit are plotted in Fig. 2 as thick
solid and dot-dash lines for the majority hole and electron

pockets. The simple model fits the experimental data
remarkably well, reproducing the observed angular depen-
dence and the electron and hole spin splitting.
The minority carrier frequencies observed in graphite

have been reviewed by Woollam [24]. The area of the neck
orbits can easily be calculated at the H point where the

dispersion E ¼ @vf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

is linear. The Fermi velocity

vf ¼
ffiffiffi

3
p

ea0�0=2@ depends only on �0, whose value of

3.15 eV is precisely known from magneto-optical data
[10,11,16]. The area of H-point neck orbit for B ? ab is
�k2f ¼ �E2

f=@
2v2

f ¼ 0:43
 1012 cm�2, which corre-

sponds to a frequency of ’ 0:4 T, i.e., the large period
(1:2 T�1) minority carrier frequency of Ref. [24]. The
neck orbits have their origin in the two interpenetrating
hole ellipsoids at the H point [6]. The size of this orbit is
expected to increase rapidly with tilt angle as the initially
small circular orbit is transformed into a large figure of
eight orbit encompassing both hole ellipsoids (or a single
ellipsoid if magnetic breakdown occurs at the H point)
[24]. The area of these neck orbits, with and without
magnetic breakdown, have been calculated within our
simple model using the previously determined parameters
for the majority hole ellipse. The only adjustable parameter
is the interpenetration of the hole ellipsoids which was
chosen to have the correct minority carrier frequency
�0:4 T. The calculated period of the neck orbits are shown
as dashed lines in Fig. 2. The neck orbits have the same
frequency as the spin split majority hole and spin split
majority hole harmonic at � ¼ 90� and so cannot be dis-
tinguished. Nevertheless, clear features corresponding to
the neck orbit with magnetic breakdown are observed in
the data for 75< �< 90�.
Woollam assigned the minority carrier period of

’ 1 T�1 to the H-point neck orbits, which in view of our
results cannot be correct. Woollam’s data is plotted as

TABLE I. Summary of fundamental frequencies and areas of
the extremal orbits (in units of 1012 cm�2) found for the ellip-
soidal and calculated SWM Fermi surface of graphite.

Bf? (T) A? Ak Ak=A? ASWM
?

Maj. hole 4.7 4.49 40.3 9.0 4.33

Maj. elec. 6.45 6.15 43.1 7.0 6.26

Hole Leg(?) ’ 1a 0.95 17.0 17.8 � � �
Hole neck ’ 0:43b 0.41 40.3 98 0.41

aWoollam [24].
bSWM calculation and Woollam [24].

TABLE II. Summary of the SWM parameters used.

�0 ¼ 3:15 eV �1 ¼ 0:375 eV �2 ¼ �0:0243 eV
�3 ¼ 0:443 eV �4 ¼ 0:07 eV �5 ¼ 0:05 eV
� ¼ �0:002 Ef ¼ �0:025 05 eV
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symbols in Figs. 2(a) and 2(c) and seems to join up nicely
with the strong feature at around 50 mT�1 in our data. The
calculated angular dependence for a neck orbit and an
ellipsoid are shown as broken lines in Fig. 2(c). Clearly,
the angular dependence corresponds to an ellipsoid rather
than a neck orbit. The angular dependence for an
ellipsoid fitted to our data and the data of Woollam is
shown in Fig. 2(a).

Finally, we have calculated the SWM Fermi surface. For
the diagonalization the SWM matrix is truncated to a size
of 600
 600. The magnetic field dependence of the den-
sity of states at Ef is calculated at kz ¼ 0 (electrons) and

kz ¼ 0:35 (holes) assuming a reasonable Lorentzian broad-
ening of the Landau levels. The Fourier transform is then
compared with the observed frequencies for B ? ab. The
SWM parameters �0 and �1 are precisely known from
magnetoptical data [10,11,16]. Ef and �3 are treated as

fitting parameters. The hole surface is rather insensitive to
�3 so that the correct hole frequency can be obtained by
choosing Ef, and then the electron frequency can be tuned

using �3. After a few iterations this process converges and
the correct electron and hole frequencies are obtained with
Ef ¼ �0:025 05 eV and �3 ¼ 0:443 eV. The SWM pa-

rameters used are summarized in Table II. The Fermi
surface is then calculated by diagonalizing the SWM
4
 4 matrix in zero magnetic field to calculate the in-
plane dispersion for kz ¼ 0� 0:5 and looking for the
crossing with Ef for angles � ¼ 0� 2� in the kx-ky plane.

The SWM Fermi surface is shown in Fig. 3 and the
calculated cross sectional areas are compared with the
measured dHvA cross sections in Table I. The good agree-
ment confirms that the diagonalization of the truncated
600
 600 matrix in magnetic field is fully consistent
with the results of diagonalizing the 4
 4 SWM matrix
in zero field. We note that recent angle resolved

photoemission (ARPES) measurements together with first
principle ab initio calculations combined with a tight
binding model, give a very similar Fermi surface, although
the reported value of the SWM trigonal warping parameter
�3 ¼ 0:274 is somewhat smaller [25,26].
While the calculated Fermi surface is consistent with the

majority electron and hole frequencies it cannot explain the
observed minority carrier frequency which is well approxi-
mated by an ellipsoid. Inspecting the SWM Fermi surface
it can be seen that there is no extremal orbit in the vicinity
of � ¼ 0, so that the frequency should not be observed
except at high tilt angles, which is indeed the case for our
data. However, this frequency is very clearly seen at � ¼ 0
in the data of Woollam. This suggests that something is
missing from the calculated Fermi surface so that a
significantly different set of SWM parameters might be
required. Notably, increasing further the trigonal warping
parameter �3 can generate minority carrier pockets.
In conclusion, angular dependent dHvA measurements

on graphite reveal the 3D character of the Fermi surface of
graphite. The Fermi surfaces are closed in all directions
and well approximated by elongated ellipsoids. Spin split-
ting is clearly observed at high tilt angles and has to be
included in the analysis in order to extract the correct
Fermi surface. The SWM parameter �3 is significantly
larger than previously thought.
We would like to thank Yu. I. Latyshev for providing

natural graphite samples.
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