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We study a bilayer consisting of an ordinary superconductor and a magnet with a spiral magnetic

structure of the Ho type. We use a self-consistent solution of the Bogolioubov–de Gennes equations to

evaluate the pair amplitude, the transition temperature, and the thermodynamic functions, namely, the free

energy and entropy. We find that for a range of thicknesses of the magnetic layer the superconductivity is

reentrant with temperature T: as one lowers T the system turns superconducting, and when T is further

lowered it turns normal again. This behavior is reflected in the condensation free energy and the pair

potential, which vanish both above the upper transition and below the lower one. The transition is strictly

reentrant: the low and high temperature phases are the same. The entropy further reveals a range of

temperatures where the superconducting state is less ordered than the normal one.
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More than 30 years ago, reentrant superconductivity
associated with magnetic ordering was first observed in
the ternary rare-earth compounds ErRh4B4 and HoMo6S8
[1–5]. On cooling, these materials first become supercon-
ducting at a critical temperature Tc2. Upon further cooling,
inhomogeneous magnetic order sets in. This ordering co-
exists with superconductivity [6] over a very narrow T
range. This onset is nearly immediately [7] followed by
that of long-range ferromagnetic order, which entails the
destruction of superconductivity, at a second critical tem-
perature Tc1. Thus, the reason for the disappearance of the
superconductivity at Tc1 is essentially the presence of the
magnetism. That nonuniform magnetic ordering can ap-
pear in the presence of superconductivity is consistent with
the prediction made by Anderson and Suhl [8]. Reentrant
superconductivity of a different kind is also found in
ferromagnet/superconductor (F=S) layered heterostruc-
tures [6]. On increasing the thickness, dF, of the ferromag-
net layers in such structures, while keeping the thickness of
the superconductor layers constant, the superconductivity
may disappear for a certain range of thickness (dF1 < dF <
dF2) and then return for larger dF (dF > dF2).

The purpose of this Letter is to show that superconduc-
tivity in F=S nanostructures which is reentrant with tem-
perature can occur under some circumstances, when the
magnetic structure is nonuniform. That is, for certain types
of ferromagnets, the Cooper pair amplitude in such struc-
tures can be nonvanishing in a range Tc1 < T < Tc2, with
Tc1 > 0. Specifically, we have found that this reentrance
occurs in F=S bilayers where the magnetic order of the F
layer is of the spiral type, as in Holmium [9]. The reen-
trance we find is very different from that in ErRh4B4 or
HoMo6S8. There, the high T phase is paramagnetic and the
low T phase is ferromagnetic. In our case, the magnetic
order remains unchanged: it is the same above Tc1, below
Tc2, and in between. Reentrance occurs also [10] in some

quasi one dimensional superconductors, but there the low
T phase is insulating. In our case, we have strict reen-
trance: the lowest T and highest T phases are the same,
while in the entire range in between, superconductivity and
magnetism harmoniously coexist. This is unusual.
Superconducting reentrance is also found in granular films
[11]: it is not due to magnetism but it involves the turning
on and off of the intergrain Josephson coupling. Here, we
are able to evaluate the thermodynamic functions of the
system as it undergoes the transitions, and from their
behavior one can glimpse the reasons for the occurrence
of the reentrance. The balance between the internal energy
of the system and its entropy can result in a situation where
the entropy of the thermodynamically stable superconduct-
ing state is higher than that of the normal state.
Extensive theoretical [6,12–17] work indicates that the

origin of dF reentrant superconductivity in F=S nanostruc-
tures can be traced to the damped oscillatory nature of the
Cooper pair wave functions in ferromagnets [18,19].
Qualitatively, when a Cooper pair enters into an F region,
it decays and the electron with magnetic moment parallel
to the internal exchange field h lowers its energy by an
amount proportional to h, while the other electron with
opposite spin raises its energy by the same amount. Then,
the kinetic energy of each electron changes and as a result
[18] the Cooper pair entering into an F region acquires a
spatially dependent phase in the F layer. This propagating
character of the Cooper pair leads to interference between
the transmitted pairing wave function through the F/S
interface and the reflected wave from the opposite surface
of the ferromagnet. Experimentally, the reentrant behavior
of superconductivity with dF has been observed and
confirmed in Nb=Cu1�xNix bilayers and Fe=V=Fe trilayers
[20–22]. However, in the work we present here, reentrance
occurs with temperature, rather than just with geo-
metry. Thus, although it is already known [23] that the
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nonuniform Ho structure has strong effects in the S=F
proximity phenomena, no T reentrance results have been
predicted or observed.

In the rest of this Letter, we will first review our methods
as applied to Holmium/superconductor (Ho=S) structures
and then discuss the microscopic behavior of the pair
amplitudes as well as the thermodynamic quantities. The
approach we use here is based on exact, self-consistent,
diagonalization of the Bogoliubov–de Gennes (BdG) [24]
equations for clean F=S structures. This approach not only
has the virtue of being very general but is also able to
describe short wavelength oscillations, which is important
for small structures. The self-consistent methods we use to
diagonalize the BdG equations have been extensively de-
scribed in the literature (see, e.g., Ref. [25] and references
therein) and details will not be given here, except where
crucial.

The geometry of the Ho=S system we consider is de-
picted schematically in Fig. 1. The y axis is normal to the
layers. The system is assumed to be infinite in the x-z plane
and has a total length d in the y direction. The S layer in our
assumed Ho=S system is a conventional s-wave supercon-
ductor with thicknesses dS and a Ho layer of thickness dF.
As in previous work, the magnetic structure is described
via a local exchange field h which in this case is of the
form: h ¼ h0fcos�ŷ þ sin�½sinð’ya Þx̂þ cosð’ya Þẑ�g, where
for Ho we have [9,23] � ¼ 4�=9 and ’ ¼ �=6. We will
take a, the lattice constant, as our unit of length and assume
throughout that the system is below the temperature (21 K)
at which, � switches from �=2 to 4�=9, i.e., Ho becomes
ferromagnetic.

The effective Hamiltonian, H eff , that we use to model
our Ho=S system takes the form

H eff ¼
Z

d3r

�X
�

c y
�ðrÞ

�
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�
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where �ðrÞ is the usual singlet pair potential; c y
� and c �

are the creation and annihilation operators with spin �
respectively; EF is the Fermi energy and � are the Pauli
matrices. To recast theH eff into diagonal form, we apply a

generalized Bogoliubov transformation, c �ðrÞ ¼P
n½un�ðrÞ�n þ v�

n�ðrÞ�y
n �, where the quantum number n

enumerates the quasiparticle (un�) and quasihole (vn�)

spinors. The �n and �y
n are the Bogoliubov quasiparticle

annihilation and creation operators, respectively. By mak-
ing use of the commutation relations, ½H eff ; �n� ¼ ��n�n

and ½H eff ; �
y
n � ¼ �n�n, one obtains the BdG equations in

matrix form. In the geometry chosen, the dependence of
the wave functions on the x and z variables leads to an
obvious phase factor that can be canceled out. This results
in a set of quasi-one-dimensional (in y) problems of the
form

He � hz �hx þ ihy 0 �

�hx � ihy He þ hz �� 0

0 ��� �He þ hz hx þ ihy

�� 0 hx � ihy �He � hz

0
BBBBB@

1
CCCCCA

�

un"
un#
vn"
vn#

0
BBBBB@

1
CCCCCA ¼ �n

un"
un#
vn"
vn#

0
BBBBB@

1
CCCCCA; (2)

where He � �ð1=2m�Þð@2=@y2Þ þ �? � EF, with �?
being the kinetic energy associated with the transverse
direction. Thus the spatial dependence of the amplitudes
is only on y. The exchange field hðyÞ in Ho is nonvanishing
only in the F region and precesses as given above (see also
Fig. 1). The pair potential must be determined self-
consistently by solving the BdG equations together with
the condition,

�ðyÞ¼gðyÞ
2

X0
n

½un"ðyÞv�
n#ðyÞ�un#ðyÞv�

n"ðyÞ�tanh
�
�n
2T

�
; (3)

where T is the temperature, and gðyÞ is the usual BCS
coupling constant g associated with a contact potential that
exists only in the S region. The prime on the sum implies
that only states corresponding to positive energies below
the ‘‘Debye’’ cutoff !D are included. The self-consistent
diagonalization is achieved as in the previous work
mentioned above, the only difference being that the

FIG. 1 (color online). Schematic of the ferromagnet (Ho)-
superconductor (S) bilayer studied. The conical ferromagnet
has a spiral magnetic structure described by an exchange field
h, (see text). The system is infinite in the x-z plane and y is
normal to the interfaces.
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matrices to be diagonalized are in this case unavoidably
complex.

From the self-consistent results one can evaluate imme-
diately the pair amplitudes and, as explained below, the
thermodynamic quantities. The transition temperatures can
be most conveniently evaluated by a linearization method
[26,27]. Near the transition temperature, the equation for�
can be written as �i ¼

P
qJiq�q, where �i are the expan-

sion coefficients with respect to the orthonormal basis,

�iðyÞ ¼
ffiffiffiffiffiffiffiffi
2=d

p
sinði�y=dÞ, and Jiq is given as Jiq � ðJuiq þ

JviqÞ=2, where

Juiq ¼ �
Z

d�?
X
n

�
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�
�u;0n
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�X
m

F�
qnmFinm
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�X
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�
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�
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Here � ¼ ð�0=4�DÞ with �0 being the dimension-
less coupling constant in S; D is the total dimensionless
thickness of the structure, D � kFSd, and kFS is the

Fermi wave vector in S. We take kFS ¼ 1=a; �uðvÞ;0n

are unperturbed particle(hole) energies; and

Finm¼�
ffiffiffiffiffiffi
2d

p P
pqðu0np"u0mq#�u0np#u

0
mq"ÞKinm, Ginm ¼

�
ffiffiffiffiffiffi
2d

p P
pqðv0

np"v
0
mq# � v0

np#v
0
mq"ÞKinm, where gKinm �R

d
0 dygðyÞ�iðyÞ�nðyÞ�mðyÞ. The u0np and v0

mq are the ex-

pansion coefficients of the unperturbed (� ¼ 0) particle
(hole) amplitudes in terms of the basis set.

This linearization method is easily used to evaluate the
transition temperature. As explained in Ref. [26,27], one
simply has to find the largest eigenvalue, 	, of the matrix
Jiq and see if it is greater or smaller than unity: in each case

one is, respectively, in the superconducting or the normal
state. The transition temperatures are those at which the
largest eigenvalue changes from greater to smaller than
unity: one finds Tc by evaluating 	 as a function of T. In the
usual case 	 is smaller than unity when T is larger than Tc.
In a reentrant case with superconductivity in the range
Tc1 < T < Tc2, we find Tc1 by increasing T from zero until
	 > 1 and Tc2 by decreasing T from above Tc2 until 	 > 1.
We also searched for transitions in the intermediate region
but none was found.

In all results given here, the thickness of the S layer is
fixed at dS ¼ ð3=2Þ
0, where 
0 is the usual BCS coher-
ence length in S. We take 
0 ¼ 100k�1

FS , and vary dF. The
magnitude of h is 0:15EF. Results for the transition tem-
perature, normalized to the bulk transition temperature T0

c

of S, are shown in Fig. 2, plotted as a function of DF �
dFkFS. In the inset, we see that the overall behavior of Tc

consists of the expected damped oscillations with approxi-
mately the DF periodicity of the spiral magnetic structure
(twelve, in our units). The main plot shows in more detail
the structure near the first minimum. There we see also a
lower small dome-shape plot [(blue) stars] with a maxi-
mum at DF � 4:5. The system is in the normal phase

inside the dome and, at constant DF, it is in the super-
conducting phase between the two curves. In the DF range
including the dome, the system, upon cooling, first be-
comes superconducting at a higher temperature Tc2, and
with further cooling, returns to the normal phase at a lower
temperature Tc1.
In Fig. 3 we display additional direct evidence confirm-

ing the existence of the reentrant behavior and showing its
properties. All results in the figure are for a system in the
reentrant region, with DF ¼ 4:3, and are plotted vs T=T0

c .
We consider first [main plot, (red) triangles, left vertical
scale], the Cooper pair amplitude FðyÞ defined by �ðyÞ �
gðyÞFðyÞ (see Eqn. (3)). The quantity shown is Fðy ¼ 
0Þ,
normalized to its bulk value in S, at a position one coher-
ence length inside S. This amplitude vanishes below Tc1

and above Tc2, with the values of Tc1 and Tc2 agreeing with
those previously found: we can see from Fig. 2, Tc1 �
0:07T0

c and Tc2 � 0:47T0
c at DF ¼ 4:3. The continuity of

the pair amplitude at Tc1 and Tc2 also indicates that the
transitions are of second order.
In the rest of Fig. 3 the thermodynamics of the transi-

tions, which follows from the free energy, is shown. Using
a standard formalism [26,28], we calculated FS, the free
energy of the whole system in the self-consistent state, and
FN , the normal state (� � 0) free energy. The normalized
condensation free energy �f � ðFS � FNÞ=ð2E0Þ (E0 is
the condensation energy of bulk S material at T ¼ 0) is
then plotted in the main part of Fig. 3 [(blue) squares, right
scale]. Both FS and FN are monotonic and have negative
curvature with T as required by thermodynamics, but their
difference is nonmonotonic. Although �f is small com-
pared to its bulk value, we can still identify the two
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FIG. 2 (color online). Calculated transition temperature Tc,
normalized by T0

c (see text), vs the dimensionless ferromagnet
width, DF ( � dFkFS). Main plot: The upper points [red +, green
�’s] are the usual critical temperature (Tc2), leading to the
superconducting state as T is lowered. In the region 4 & DF &
5 [highlighted by the green �’s] a second transition back to the
normal state appears at the (blue) star points forming the lower
‘‘dome.’’ The inset shows a broader range of magnet widths,
revealing the overall periodicity of Tc2.
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transition temperatures Tc1 and Tc2 from this plot. Their
values are again in agreement, within numerical uncer-
tainty, with those found from the pair amplitudes and
from direct calculation. The system is in the superconduct-
ing state when the T falls in the range Tc1 < T < Tc2. As
Tc1 is approached from above or Tc2 from below, the
solution with � 6�0 disappears (as seen in the amplitude
plot, (red) triangles), and the two free energies coincide:
this is just what happens in ordinary BCS theory as the
transition is approached from below. The minimum con-
densation free energy occurs at Tm � 0:32T0

c which coin-
cides with the location of the maximum pair amplitude. We
also evaluated the entropy in the normal and superconduct-
ing states via textbook formulas. The normalized [26]
entropy difference for the same case is shown in the inset
of Fig. 3. It confirms that the system indeed undergoes
second order phase transitions at both Tc1 and Tc2. Unlike
in a bulk superconductor, or in nonreentrant structures
[26], there is now a range of T (Tc1 < T < Tm) where the
superconducting state is less ordered than the normal one,
and the entropy helps maintain the superconductivity.

What is the physics behind this T reentrance? For F=S
bilayers with a uniform ferromagnet, the superconductivity
disappears for a certain range of dF. This disappearance is
due to the oscillating Cooper pair amplitude. Now, the
spiral magnetization in Ho introduces an oscillating mag-
netic order. Both the magnetic structure and the super-
conductivity are nonuniform, consistent with the
prediction in Ref. [8] that superconductivity may coexist

with nonuniform magnetic order. Thermodynamically, we
have here a subtle example of entropy-energy competition.
In the range Tm < T < Tc2, �f and �S behave qualita-
tively as they do for an ordinary [29] bulk superconductor
in the region 0< T < Tc, (although they are much
smaller). In either case �S vanishes at both ends of the
range and has a minimum at a finite T in between. But in
our case Tm is nonzero. For T < Tm, �S turns positive
because of the oscillatory nature of the pair potential. The
superconducting state becomes then the higher entropy
phase: the roles of the N and S phases are thus reversed,
the pair potential begins to decrease, and this leads inexo-
rably to the lower transition at Tc1, and to the reentrance
into the same N phase.
We have already seen above the clear differences be-

tween this entropy competition driven situation and other
singlet superconducting T reentrance cases associated with
field induced situations. Temperature reentrance involving
long-range magnetic order has been long known to occur in
spin glasses [30], but the lowest T and high T phases (spin
glass and paramagnetic, respectively) are not the same.
Somewhat similar but even more complicated situations
occur in liquid crystals and may be a general property of
[31] frustrated systems. But a survey would take us too far
afield.
To our knowledge, this effect has not been searched for.

The predicted range of T needed, down to about 0.1 T0
c

should pose no difficulty. The best course should be to
fabricate samples of varying dF, verify the Tc oscillations
(see Fig. 2 inset) and then search for reentrance for dF near
a minimum of the Tc vs dF curve, where the phenomenon is
predicted to occur. (This is possibly because such minima
are associated with fragility of the superconducting state).
It has proved experimentally feasible [32] to study the T
induced 0-� state transitions in S=F=S trilayers, which are
related to a different effect [26] also involving nontrivial
pairing correlations. Thus, difficulties in sample making
are not insurmountable [33].
In conclusion, we predict that F=S bilayers with an

inhomogeneous conical magnetization will exhibit reen-
trant superconductivity with T, in addition to dF. Thus,
superconductivity exists for Tc1 < T < Tc2 with nonzero
Tc1 under some conditions. We have shown clear evidence
for this by self-consistently determining the critical
temperature-thickness phase diagram, and the T depen-
dence of the pair amplitude. The thermodynamics were
investigated via the free energy, revealing a range of tem-
peratures in which the normal state is lower in entropy than
the superconducting state.

*wu@physics.umn.edu
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Also at Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, MN 55455, USA.
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FIG. 3 (color online). Pair amplitude and thermodynamic
functions. All quantities are plotted vs T=T0
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(see text) singlet Cooper pair amplitude FðYÞ, one correlation
length inside S. This quantity vanishes at the upper transition
temperature (Tc2 � 0:47T0
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