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We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum

phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques comple-

mented with analytical arguments, we investigate paradigmatic examples for both quantum spins and

bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find

quantum critical points with much better accuracy in one dimension. We further demonstrate that F can

be successfully applied to the detection of quantum criticality in higher dimensions with no prior

knowledge of the universality class of the transition. Promising approaches to experimentally access

fluctuations are discussed for quantum antiferromagnets and cold gases.
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Quantum phase transitions [1] occur at zero temperature
and are solely driven by quantum fluctuations. Hence,
it is expected that a quantum phase transition should be
manifested through the system’s entanglement properties
[2]. Identifying appropriate measures of entanglement is,
however, a nontrivial task. An important tool to access
and quantify the amount of entanglement between two sub-
sets A and B of an interacting quantum system is the von
Neumann entanglement entropy (EE). In one dimension
(1D), conformal field theory and exact calculations have
established the logarithmic scaling of the von Neumann
entropy [3] for critical systems. For gapped systems, the
EE saturates to a constant and thus obeys a strict area law
(assuming a local Hamiltonian) [4]. In fact, EE can help to
locate the quantum critical point (QCP) in some cases [5]; for
more subtle situations (e.g., Kosterlitz-Thouless transitions),
it was demonstrated recently that the EE failed to locate the
QCPof the frustratedJ1-J2 chain [6]. In higher dimensions, it
was established that the gapless Heisenberg antiferromagnet
on a square lattice obeys a strict area law [7,8], as also
expected for a gappedphase. In sucha situation, it is therefore
unlikely that von Neumann EE will be a useful and practical
tool to detect QCPs. Conversely, the valence bond entropy
has been shown to be a powerful quantity to locate QCPs in
any dimension, based on different scaling regimes, but it is
restricted to SU(2)-invariant spin systems [6,9].

The aim of this Letter is to promote a general and
more practical quantity to precisely locate QCPs for a
larger variety of strongly correlated systems in any dimen-
sion d. Using the concept of bipartite fluctuations [10–12]
F of particle number or magnetization in many-body
quantum systems, we focus on systems where such U(1)
charges O are globally conserved while they locally fluc-
tuate within each subsystems. We define

FA ¼
�� X

i2A

Oi

�
2
�
�

� X
i2A

Oi

�
2
; (1)

where the (globally) conserved quantity O can be the
particle number n or the magnetization Sz and h�i refers
to the ground state at T ¼ 0. Oi is defined for a subsystem
A embedded in a larger one; see Fig. 1. For the special
case thatA is the total system,F A is just the susceptibility
(or compressibility, respectively) multiplied by the tem-
perature. We show for various models, such as the spin- 12
frustrated J1-J2 antiferromagnet in 1D, the Bose-Hubbard
chain at unit filling, 2D coupled Heisenberg ladders, and
Bose-condensed hard-core bosons on a square lattice, that
FA provides a very efficient tool to accurately detect
quantum criticality in the framework of quantum Monte
Carlo (QMC) and density matrix renormalization group
(DMRG) simulations on finite-size systems [13]. The key
feature of the bipartite fluctuations is the distinct scaling
behavior for gapless and gapfull phases in any dimension d
[8,10,11], as summarized in Fig. 1: Within a subsystem of
linear size L, F exhibits a strict area law for a disordered
(gapped) ground state, F gapped / Ld�1, whereas for a

(quasi)ordered gapless statemultiplicative logarithmic cor-
rections appear, F gapless / Ld�1 lnL, thus allowing one to

precisely locate a QCP between two such regimes. The
bipartite fluctuations give an alternative view of the corre-
lation functions, since they are dominated by short-range
fluctuations [11]. Experimentally, the concept of fluctua-
tions has a very strong potential [12].

FIG. 1 (color online). For a d-dimensional system, the fluctu-
ations F within subsystem A (of linear size L) with respect to
B provide a precise estimate to locate a QCP at �c between
gapless (quasi)ordered and gapped disordered phases with dis-
tinct scalings with L.
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One-dimensional systems.—We now address 1D mod-
els, governed by Kosterlitz-Thouless–type quantum phase
transitions usually difficult to precisely locate numerically.
The first model we study is the frustrated spin- 12 J1-J2
chain, governed by the Hamiltonian

H ð�Þ ¼ X
i

ðSi � Siþ1 þ �Si � Siþ2Þ; (2)

where J2=J1 � � � 0. For � � �c, this system has power-
law critical correlations. At �c ’ 0:2412, a Kosterlitz-
Thouless transition into a dimerized phase occurs
[14,15]. As mentioned above, the estimated value for the
QCP using EE is not very precise compared to the estab-
lished methods [14], because the prefactor of the leading
term in the EE (i.e., the central charge c) is more or less
insensitive to a change of � close to the QCP [6]. Instead,
we detect the transition by observing the behavior of F
under variation of the control parameter �, which triggers
the quantum phase transition. The low-energy theory de-
scribing such a quasiordered state is the Tomonaga-
Luttinger liquid [15], for which [11,12]

F ðLÞ ¼ K

�2
lnLþ cst; (3)

where K ¼ 1=2 is the Luttinger liquid parameter of this
SU(2) point. However, marginally irrelevant operators lead
to sizable logarithmic corrections for K [16], when com-
puted on finite-size systems. Interestingly, such corrections
vanish precisely at �c, where K quickly reaches its asymp-
totic value of 1=2. Thus we have a systematic method at
hand to detect this phase transition. In Fig. 2, we have
plotted the Luttinger parameter K extracted from finite-
size DMRG calculations of Eq. (3) versus �. For periodic
boundary conditions (PBC) and L ¼ 100, 150, 200, and
250, and after performing finite-size scaling, we obtain
�c ¼ 0:2412ð3Þ which agrees very well with the best esti-
mates [14]. While there are a few other techniques avail-
able to find the QCP of the J1-J2 chain [6,14,17–19], our
approach stands out through efficiency and simplicity.

Another interesting model is the Bose-Hubbard chain:

H ¼ �t
X
hiji

byi bj þ
U

2

X
i

niðni � 1Þ �X
i

�ni; (4)

where t is the hopping amplitude, U the on-site repulsion,
and � the chemical potential. Away from half filling, we
expect a superfluid-Mott transition triggered by � � t=U.
The superfluid phase is a Luttinger liquid [20] with
Luttinger parameter K � 1. For unit filling, the quantum
phase transition from a superfluid to a Mott insulator is of
Kosterlitz-Thouless type (like in the J1-J2 chain discussed
above). The complete ð�; t=UÞ phase diagram was care-
fully investigated in Refs. [21–23]. Here we revisit the
problem (restricted to unit filling) and show that we locate
the transition with a better accuracy by virtue of the
fluctuations. In the superfluid phase, the Green’s function

GðrÞ ¼ hbyr b0i / r�1=2K decays as a power law. From
Luttinger liquid theory, we know that the transition occurs
for Kc ¼ 2; see Ref. [24]. In Refs. [21,22], the Luttinger
parameter K was extracted directly from GðrÞ, thus giving
an estimate of the critical point �c ¼ 0:297� 0:01 [22].
The major advantages of our approach are that (i) the
Luttinger parameter K can be extracted much more accu-
rately from the fluctuations rather than the Green’s func-
tion (see discussion in [13]) and (ii) the computational cost
of F using DMRG (see Appendix C of Ref. [12]) is much
lower as compared to the Green’s function at large dis-
tances. We extract K fromF for open boundary conditions
with L ¼ 64, 128, and 256 (the latter is shown in Fig. 3).
By performing finite-size scaling, we obtain a much more
precise estimate �c ¼ 0:2989ð2Þ, as compared to previous
works [13].
Two dimensions.—Let us now move to 2D with a system

of coupled spin- 12 antiferromagnetic ladders, depicted in

the inset in Fig. 4(a) and governed by the Hamiltonian

H ¼ X
ladd:

Si � Sj þ
X

interladd:

�Si � Sj: (5)

This model [25,26] displays a gapped valence bond solid
(VBS) phase for small interladder coupling � < �c with
�c ¼ 0:314 07ð5Þ [25], and a gapless Néel-ordered phase
for � > �c. Here we investigate the T ¼ 0 fluctuations of
the total magnetization in a region A of size x� y em-
bedded in a periodic square lattice L� L. We choose a

FIG. 2 (color online). Luttinger parameter K of the J1-J2 chain
extracted via (3) versus � � J2=J1. Shown are DMRG data for
L ¼ 100 (red squares) and 200 (black dots) for PBC.

FIG. 3 (color online). Luttinger parameter K of the Bose-
Hubbard chain extracted via (3) versus � � t=U for L ¼ 256
(unit filling) and open boundary conditions. We restricted the
local boson occupation number to 4 [21,22]. Inset: Zoom close to
the transition.
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subsystem A with x ¼ L=2 and y ¼ L which contains an
even number of sites. QMC results for the T ¼ 0 [27]
expectation of F ðL=2Þ are shown in Fig. 4, with square
lattice sizes up to L� L ¼ 104, for the isotropic square
lattice � ¼ 1 (Néel) and for weakly coupled ladders with
� ¼ 0:1 (VBS). In contrast with the entanglement (or
Rényi) entropy which displays a strict area law in the
Néel phase [7,8] (and presumably also in the VBS phase),
the fluctuations follow a rather different scaling [8]:

F ð‘Þ �
�
�‘ ln‘þ �‘þ � ðgapless Ne�elÞ;
�0‘þ �0 ðgapped VBSÞ: (6)

Therefore, F =‘ plotted for different sizes will display a
crossing point at �c, as we indeed observe in Fig. 4(b),
where the curves F ðL=2Þ=L are plotted for various system
sizes. The spin stiffness �s, also known to be a useful
quantity to locate a QCP, is shown in the right inset (i)
in Fig. 4(b), where one sees a similar crossing for
�s � Ldþz�2, with z ¼ 1 and d ¼ 2. As usual for such a
technique, a drift of the crossing point is observed with L,
as visible in the left inset (ii) in Fig. 4(b). Already known
for a few other models [26,28], the crossing points obtained
from the stiffness converge very rapidly with 1=L to the
bulk value �c, whereas we found a slower convergence for
the estimates obtained from F =L. Despite such an effect
(which may not be generic but model-dependent), we
demonstrate here with this simple example that F is a
very useful quantity to locate a QCP between ordered and
disordered phases for d > 1.

One can get even more insight from the behavior of the
coefficients � and � in Eq. (6) as a function of the
interladder coupling � (see Fig. 5). The prefactor � of
the leading term �L lnL in the Néel phase vanishes

at the critical point �� ð�� �cÞx, with x ’ 0:7 and
�c ¼ 0:315ð1Þ, in good agreement with the value
0.314 07(5) [25]. The area law term �L, displayed in
Fig. 5(b), although certainly nonuniversal, exhibits a
very interesting � shape and passes through a maximum
�c ’ 0:0835 at the critical coupling �c.
It is important to emphasize that, contrary to the stiff-

ness, a prior knowledge of any critical exponent, such as
the dynamical exponent z, is not necessary to precisely
locate the QCP. Note also that we expect the valence bond
entropy [9] to display similar crossing properties for such a
SU(2) symmetric Hamiltonian [Eq. (5)]. In order to illus-
trate further the general character of this method, we focus
now on a non-SU(2) model: hard-core bosons on the square
lattice. Governed by the Hamiltonian

H ¼ �t
X
hiji

ðbyi bj þ H:c:Þ ��
X
i

byi bi; (7)

FIG. 5 (color online). Prefactors � and � from Eq. (6) for
coupled Heisenberg ladders, extracted from the QMC data of
Fig. 4 and plotted against �. (a) The critical point is shown by a
red circle, and the green curve is the power-law fit indicated on
the plot. (b) The vertical dashed line signals the critical coupling
�c, and the crossing point (red circle) is at �c ’ 0:0835.

FIG. 4 (color online). QuantumMonte Carlo results for T ¼ 0 fluctuationsF of the total magnetization in a regionA for 2D coupled
spin- 12 ladders [Eq. (5)], depicted in the inset in (a). Left (a): F =L increases logarithmically with L in the Néel regime (black squares

� ¼ 1), whereas it saturates to a constant in the valence bond state (green circles � ¼ 0:1). Right (b):F =L, plotted versus � for various
system sizes, displays a crossing point at�c. Insets: (i) Crossing of the stiffness�s � L at�c for the same sizes; (ii) 1=L convergence of the
crossing point for F (red squares) and �s (black circles) to the critical value (horizontal black line) �c ¼ 0:314 07 [25].
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where b are hard-core boson operators, t the hopping
integral, and � the chemical potential, hard-core bosons
on the square lattice [29] exhibit a particle-hole symmetric
phase diagram with, at T ¼ 0, a Bose-condensed super-
fluid state for j�=tj< 4 and trivial Mott insulating phases
for j�=tj> 4, the transition between them being in the
universality class of the dilute Bose gas with z ¼ 2. The
Bose-condensed [U(1)-broken-symmetry] state is expected
to display for F (fluctuations of the particle number) a
similar scaling as the one observed for SU(2)-broken Néel-
ordered spins, whereas for the trivial Mott insulators we
simply have FMott ¼ 0. In Fig. 6(a), T ¼ 0 QMC results
obtained forF are shown for 4 representative values of the
chemical potential. The prefactor � of the L lnL term is
plotted versus the chemical potential� in the right panel of
Fig. 6, where we observe a very interesting domelike shape
in the superfluid regime. One can use an interesting anal-
ogy with quasi-one-dimensional systems where the
Josephson-type interchain tunneling term will lock the
superfluid phase difference between all chains. The low-
energy (quasiordered) superfluid phase is described in
terms of a single macroscopic 1D gapless mode. For a
number of chains N ¼ L, then we predict F ¼
ðKL=�2Þ lnL. The logarithmic scaling of F is controlled
by the Luttinger parameter K of the effective theory. In the

hydrodynamic description of a Luttinger liquid, K ¼
�

ffiffiffiffiffiffiffiffiffiffi
��sf

p
, where � is the compressibility and �sf is the

stiffness. This gives � ¼ ffiffiffiffiffiffiffiffiffiffi
��sf

p
=�. A similar quantum-

hydrodynamic theory for interacting bosons is obtained in
two dimensions by using the Gross-Pitaevskii approach.

Comparing the prefactor � with
ffiffiffiffiffiffiffiffiffiffi
��sf

p
(obtained in the

same QMC simulation), as shown in Fig. 6(b), gives a very
good agreement. We find the following result for the entire

superfluid regime: �ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffi
��sf

p
=p with a coefficient

p ’ 3:2ð1Þ. Scaling relations close to a QCP at �c predict
�sf�	2�d�z and ��	z�d, thus leading to �� ð�� �cÞ
.
This can be checked for Heisenberg ladders, as shown
in Fig. 5(a), where the exponent x ’ 0:7 is very close
to 
 ¼ 0:709ð6Þ of the 3D Heisenberg universality class
[26].
Conclusion.—The concept of bipartite fluctuations of a

(strongly correlated) quantum system has been shown for
various paradigmatic condensed matter models to be an
efficient, accurate, and rather general tool to detect quan-
tum critical points by using state-of-the-art numerical
techniques. In contrast to the von Neumann entropy, the
fluctuations can be successfully used even in two spatial
dimensions to find the critical point. Promising paths to
directly measure the fluctuations have been proposed re-
cently [12]; particularly interesting proposals are quantum
magnets in an external magnetic field with Meissner
screens (covering regionB) as well as direct measurement
of F using single-atom microscopes [30]. A next step will
be to test the usefulness of this tool for unconventional
quantum criticality [31].
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