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All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter:
Application to Water and Carbon Plasmas
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We develop an all-electron path integral Monte Carlo method with free-particle nodes for warm dense
matter and apply it to water and carbon plasmas. We thereby extend path integral Monte Carlo studies
beyond hydrogen and helium to elements with core electrons. Path integral Monte Carlo results for
pressures, internal energies, and pair-correlation functions compare well with density functional theory
molecular dynamics calculations at temperatures of (2.5-7.5) X 10° K, and both methods together form a

week ending
16 MARCH 2012

coherent equation of state over a density-temperature range of 3—12 g/cm? and 10*-10° K.
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The development of first-principles methodology for
warm, dense matter (WDM) is one of the great challenges
of modern materials theory. A need for rigorous simulation
of WDM has escalated with intensified interest in advanced
energy technologies [1], physics and chemistry of solar and
extrasolar planets [2], shock compressed matter [3], and
different types of plasma-matter interactions [4]. The
standard first-principles method, Kohn-Sham density func-
tional theory molecular dynamics [5] (DFT-MD), produces
accurate equations of state in the lower temperature range
of the WDM regime. The maximum accessible tempera-
ture is limited, however, because the number of partially
occupied orbitals eventually becomes computationally in-
tractable [6]. On the other hand, the many-body path
integral Monte Carlo (PIMC) method [7] is naturally for-
mulated to study high temperature dependence of materi-
als. Ideally, PIMC and DFT calculations together can
produce a coherent equation of state for the entire WDM
regime and cross-validate each other at commonly acces-
sible temperatures. However, the PIMC technique has not
yet been extended to systems with core electrons. Indeed,
PIMC studies up to now have been limited to plasma states
of hydrogen [8—10] and helium [11,12]. In this Letter, we
develop an all-electron PIMC method for first-row ele-
ments and combine results with DFT-MD data to produce
comprehensive equations of state for water and carbon in
the WDM regime for a density-temperature range of
3-12 g/cm? and 10*-10° K.

The central characteristic of a material in the WDM
regime is that the electron-ion interaction becomes com-
parable to the electron kinetic energy, and, therefore, ef-
fects of bonding, ionization, exchange correlation, and
quantum degeneracy are all important. The analytic meth-
ods of condensed matter and plasma physics [13] are
typically not reliable without experimental input. One
must turn to the numerical, first-principles PIMC and
DFT-MD methods which accurately capture the many-
body physics in the WDM regime without empirical
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parameters or corrections. However, first-principles meth-
ods utilize certain approximations, and one must compare
with experimental data if available.

The key approximation in the DFT method is that of the
exchange-correlation potential, which describes all the
many-body interactions. The exchange-correlation poten-
tials used in nearly all condensed matter calculations are
constructed from zero-temperature quantum Monte Carlo
calculations of the electron gas [14]. In the WDM regime,
temperatures are at or above the Fermi temperature, and
electrons are excited relative to their ground state.
Therefore, without further validation, the exchange-
correlation potential cannot be assumed to provide an
accurate description in the WDM regime.

In DFT calculations, it is also common to replace the
core electrons in each atom with a pseudopotential.
Typically, the highest accuracy is obtained with a nonlocal
pseudopotential which depends on the energy and angular
momentum components in core states. However, in the
WDM regime, it is possible to excite electrons out of
core levels. The pseudopotential approximation may break
down and should always be compared with all-electron
calculations. Additionally, finite-temperature DFT calcu-
lations use a Fermi-Dirac function to allow for thermal
occupation of single-particle electronic states [15] but
requires an increasing number of bands with temperature,
crippling its efficiency at extreme temperatures. Orbital-
free density functional methods aim to overcome such
thermal band limitations, but several challenges remain
to be solved [16].

The PIMC method avoids the band structure calculation
and exchange-correlation approximation by being directly
defined from the path integral formulation of quantum
statistics. The PIMC method stochastically solves the full
finite-temperature quantum many-body problem by treat-
ing electrons and nuclei equally as paths and addresses
all of the WDM characteristics on an equal footing. All
finite-temperature properties of a material are then readily
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calculated from the thermal density matrix. In contrast to
the DFT method, PIMC efficiency increases with increas-
ing temperature as particles become more classical and
fewer time slices are needed, scaling inversely with tem-
perature. A nonlocal pseudopotential formulation within
the PIMC method does not yet exist [17], and this is why
PIMC calculations so far have been limited to hydrogen
and helium. PIMC calculations presented here treat all
electrons explicitly.

The only uncontrolled approximation in PIMC calcula-
tions is that of the nodal surface to deal with the fermion
sign problem. Unchecked, the fermion sign problem leads
to a cancellation of positive and negative contributions to
the density matrix which causes large fluctuations in com-
puted averages. One solution to this problem is the so-
called fixed-node approximation in which the location of
the nodes are fixed to a known trial nodal structure in order
to guarantee positive contributions to the thermal density
matrix. The form of the density matrix does not enter the
PIMC computation, only the location of the nodes.

The PIMC method we present here employs a free-
particle nodal structure, which is expected to be accurate
for systems that are almost fully ionized. One could as-
sume that accurate calculations of heavier elements require
very high temperatures where atomic cores are ionized
also. However, for hydrogen, PIMC calculations with
free-particle nodes have provided reliable results at much
lower temperatures where only partial ionization occurs
[10]. The PIMC results presented for water and carbon here
will demonstrate that accurate pressures and energies are
obtained for temperatures so low that the 1s states are fully
occupied and the 2s states are partially occupied. Analyses
of the DFT band occupations show that as the 2s states
become less than 60% occupied for 7 = 2.5 X 10° K,
PIMC and DFT results agree.

In order to explain this result, we first note that no nodes
are needed to describe an isolated, doubly occupied 1s
state. Our results for water and carbon indicate that free-
particle nodes also work in cases where the ls state is
doubly occupied and all other electrons are ionized. This
may be because only one orbital out of many in the Slater
determinant is not characterized well. As the occupation of
the 2s state exceeds 60% at lower temperatures, the PIMC
pressures and energies become inaccurate because free-
particle nodes cannot yield the correct shell structure
around the nucleus [18]. Our results will show that, for
first-row elements, free-particle nodes remain sufficiently
accurate at low enough temperatures to overlap with the
highest temperature DFT data. This allows the two meth-
ods to cross-validate each other and form a single coherent
equation of state for all temperatures.

As a first application to test our method, we study water,
because it is one of the most prevalent materials in nature
and knowledge of its electronic properties in the WDM
regime is crucial for understanding aspects of astrophysical

objects, such as the interiors of giant gas planets. Reports
suggest that Uranus, Neptune, Jupiter, and Saturn contain
significant amounts of water [19-21]. In addition to its rich
solid and fluid phases, water is known for its superionic and
plasma phases as well as an insulator-to-metal transition at
extreme densities and temperatures. Recent DFT-MD
simulations [22] have computed the equation of state of
water up to 2 X 10* K and 15 g/cm?, improving upon the
older SESAME 7150 [23] table comprised of a number of
analytic models and MD using empirical potentials.

As a second application, we study carbon at high pres-
sures and temperatures for its importance in future energy
technologies. In inertial confined fusion experiments, car-
bon is used as an ablator for target capsules. The perform-
ance of the ablator is heavily dependent on the equation of
state in the WDM regime [24]. There have been a number
of attempts to construct carbon equations of state in the
WDM regime, including free energy models [25,26] and
DFT-MD simulations [27], but they ultimately resort to
more approximate Thomas-Fermi-based models that can-
not describe any chemical bond.

For our PIMC simulations, the Coulomb interaction is
incorporated via pair density matrices derived from the
eigenstates of the two-body Coulomb problem. A suffi-
ciently small time step is determined by converging total
energy as a function of the time step until the energy
changes less than 0.2%. For both water and carbon, we
use a time step of 0.007 8125 Ha™! for temperatures below
5% 10° K, and, for higher temperatures, the time step
decreases as 1/T while keeping at least four time slices
in the path integral. In order to minimize finite size errors,
the total energy is converged to better than 0.2% for a 24-
atom simple cubic cell.

The DFT-MD simulations were performed with either
the ABINIT code [28] using all-electron pseudopotentials or
with the Vienna ab initio simulation package (VASP) [29]
using the projector augmented-wave (PAW) method [30].
MD uses a NVT ensemble regulated with a Nosé-Hoover
thermostat. Exchange-correlation effects are described by
using the Perdew-Burke-Ernzerhof generalized gradient
approximation [31]. Electronic wave functions are ex-
panded in a plane-wave basis with an energy cutoff of at
least 1500 eV for water and at least 900 eV for carbon in
order to converge total energy to chemical accuracy. Size
convergence tests indicate that total energies are converged
to better than 0.2% in a 24-atom simple cubic cell.
Convergence of the number of orbitals to a prescribed
thermal occupation of less than 1 X 10™* requires up to
1500 bands at 7.5 X 10° K for a 24-atom cell. All simula-
tions are performed at the gamma point of the Brillouin
zone, which converges total energy to better than 0.1% at
relevant high temperatures.

Figures 1 and 2 compare pressures obtained for water
and carbon, respectively, from PIMC, DFT-MD, and
Debye-Hiickel [32] simulations. Water is studied at fixed
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FIG. 1 (color online). Comparison of excess pressure relative
to the ideal Fermi gas plotted as a function of temperature for
water.

densities of 3.18 and 11.18 g/ cm?, and carbon is studied at
4.17 and 12.64 g/cm?®. The two densities in each case
correspond to a pressure of 1 and 50 Mbar at zero tem-
perature. Pressures P are plotted relative to a fully ionized
Fermi gas of electrons and ions with pressure, Py, in order
to compare the pressure contributions that result only from
particle interactions. PIMC and DFT-MD results for (P —
P,)/ P, agree to better than 0.03 in the range of 2.5 X 103
to 7.5 X 10° K. Convergence tests show that results are
equally well converged in 24-atom and 8-atom simulation
cells. The excellent agreement allows for cross-validation
which implies that the zero-temperature DFT exchange-
correlation potential remains valid at high temperatures
and that the free-particle nodal approximation is valid in
PIMC calculations when atoms are only partially ionized.
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FIG. 2 (color online). Comparison of excess pressures relative
to the ideal Fermi gas plotted as a function of temperature for
carbon.

The two methods have comparable computational cost in
the overlap region, but the DFT computational cost starts to
become prohibitive beyond 7.5 X 103 K, and free-particle
nodes break down below 2.5 X 10° K.

In addition, Fig. 2 compares the instantaneous pressures
obtained for a fixed configuration of carbon nuclei at
various electronic temperatures using PIMC calculations,
DFT calculations with all-electron pseudopotentials, and
DFT calculations with VASP PAW pseudopotentials.
Agreement between PIMC calculations and DFT calcula-
tions with all-electron pseudopotentials is very good from
1 X 10° to 2 X 10° K. However, beyond 7.5 X 10° K,
PAW DFT calculations no longer predict the correct tem-
perature dependence, indicating that the missing contribu-
tions of core excitations to the total energy become
significant. All-electron DFT calculations are too computa-
tionally demanding to perform calculations with moving
nuclei.

In Fig. 3, the internal energies E are plotted relative to
the ideal internal energy E,. PIMC and DFT-MD results for
(E — Ey)/E, agree to better than 0.04 in the range of
2.5-7.5 X 10° K for water and carbon. Convergence tests
show that results are equally well converged in 24-atom
and 8-atom simulation cells. Our PIMC calculations extend
the equations of state to the weakly interacting plasma limit
at high temperatures, in agreement with the Debye-Hiickel
model. The DFT-MD and PIMC methods together form a
coherent equation of state over all temperatures.

Figure 4 shows nuclear pair-correlation functions for
carbon and water using PIMC and DFT-MD calculations.
Figure 4(a) demonstrates the sensitive temperature depen-
dence of structural properties for carbon. Water pair corre-
lations are shown in Fig. 4(b) at a single temperature of
7.5 X 10° K. Simulations use a 24-atom simulation cell
size, which converges pair-correlation curves to better than
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FIG. 3 (color online). Comparison of excess internal energies
relative to the ideal Fermi gas plotted as a function of tempera-
ture for (a) carbon and (b) water. The lower density data have
been shifted by a constant, —2, in both cases.
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FIG. 4 (color online).
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Nuclear pair-correlation functions for

10%. The PIMC and DFT pair-correlation curves essen-
tially lie on top of each other with the maximum deviation
being 17% for carbon at r = 0.63 A. The results demon-
strate that PIMC and DFT calculations predict consistent
structural properties in addition to the equation of state.

In conclusion, we have developed an all-electron path
integral Monte Carlo method using free-particle nodes that
allows for calculations of materials composed of first-row
elements and mixtures thereof. Our computations of pres-
sures, internal energies, and pair-correlation functions for
water and carbon demonstrate that PIMC and DFT calcu-
lations can cross-validate each other in a commonly acces-
sible temperature range and provide an accurate, coherent
equation of state ranging from ambient conditions to the
plasma limit. The excellent agreement between the PIMC
and DFT-MD methods validates the use of free-particle
nodes for partially ionized first-row elements and the use of
zero-temperature exchange-correlation functionals at high
temperature.
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