
Chern-Simons Expectation Values and Quantum Horizons from Loop Quantum
Gravity and the Duflo Map

Hanno Sahlmann*

Asia Pacific Center for Theoretical Physics, Pohang, Korea,
and Physics Department, Pohang University for Science and Technology, Pohang, Korea

Thomas Thiemann†

Institute for Theoretical Physics III, University of Erlangen-Nürnberg, Erlangen, Germany
(Received 31 October 2011; published 16 March 2012)

We report on a new approach to the calculation of Chern-Simons theory expectation values, using the

mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for

functions on Lie algebras. These new developments can be used in the quantum theory for certain types of

black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and

the theory of quantum groups.
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Introduction.—Loop quantum gravity (LQG) is based on
a canonical formulation of gravity in terms of an SU(2)
connection A and a densitized triad field E on a three
dimensional spatial hypersurface S. Holonomies along
paths e and fluxes through surfaces S in S,

he½A� � P exp∮
e
A; ES;f ¼

Z
S
�EIfI (1)

have well-defined operator analogues in the quantum the-
ory [1]. Here �E is the 2-form

ð�EðpÞÞab ¼ �abc�
IJEc

I ðpÞTJ

dual to E, �IJ is the inverse of the Cartan-Killing metric,
and TI a basis of SU(2). It is apparent that the variables A,
E are treated on a slightly unequal footing in the quantum
theory, and using different functionals of E has been advo-
cated in the literature, for example [2,3]. Here we consider
a proposal in the same direction. We will show that

WS ¼ P exp

�
8�ic∯

s
� ÊI AdhsðTIÞd2s

�
(2)

can be well defined in the quantum theory. Here, Ê is the
LQG operator corresponding to E, c is a real constant, the
holonomies hs are along a path system from a chosen base-
point on the boundary of S to the point s, and the integral is
surface ordered as in the non-Abelian Stokes theorem [4].
Motivation for the path ordering is a product law for the
joining of surfaces, and simple behavior under gauge trans-
formations. The WS are operator valued matrices with
noncommuting entries. Intriguingly, despite their operator
nature, they turn out to share many properties of SU(2)
matrices, or rather those of some quantum deformation of
SU(2), the precise nature of which is still to be determined.
This emergence of quantum SU(2) in its kinematic setup is

interesting for LQG in itself, but it also has interesting
applications. On the one hand, we will sketch below that
the simple condition

h@S� ¼ WS� (3)

for all surfaces S lying in a surface H, seems to reduce a
state � on H to a solution of quantum 3d Euclidean
gravity. Since (3) is the quantum analogue of the horizon
condition for type I isolated horizons [5], this shows a way
to derive their quantum properties directly in LQG [6]. On
the other hand, we show how the operatorsWS can be used
to calculate the Jones polynomial and its generalizations
for certain simple links [7,8].
A key ingredient in making (2) well defined is an order-

ing procedure for the noncommuting components ÊI. As
we will explain below, it uses a fundamental structure from
the theory of Lie algebras, the Duflo map [9], and it is
responsible for the occurrence of the quantum group struc-
tures. (The use of this map in LQG, albeit in a different
context, was first suggested in [10], and it has also been
applied recently in [11].) This means that there is a con-
nection between Duflo map and quantum groups that may
open an interesting new perspective on the latter.
New flux operators.—
Definition.—The basic ingredient in the definition of the

operators WS are the flux operators [1] of LQG. In the
literature, these are always associated to a surface, but it
turns out that the integrand exists independently as an

operator valued distribution Êa
I ðsÞ. It factors into two parts,

Êa
I ðsÞ ¼ ÊaðsÞÊIðsÞ, which act on a holonomy functional

as follows:

ÊaðsÞhe½A� ¼ eaðsÞhe½A�;
eaðsÞ ¼

Z
dt _eaðtÞ�3ðs; eðtÞÞ;
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where eðtÞ is the path along which he is taken. Moreover

Ê IðsÞhe½A� ¼ he2½A�TIhe1½A�;
where it was assumed that s is the end point of e1 and the
beginning point of e2 and e ¼ e2 � e1. If s does not lie on
e, the result of the action is the zero vector. Consideration

of more general cases shows that ÊIðsÞ acts essentially like
an invariant vector field XI of SU(2). Now, using these
operator valued distributions we can define the operator
WS as

WS ¼ I2 þ 8�ic
Z
S
Adhsð � ÊðsÞÞþ ð8�icÞ2

�
Z
S2
Ks;s0 Adhsð � ÊðsÞÞAdhs0 ð� Êðs0ÞÞþ . . . :

Here, K is an integration kernel that takes care of the
surface ordering. The holonomies hs connect the point s
on the surface with a base point on the boundary of S via a
system of paths in the surface, as in the non-Abelian Stokes
theorem [4]. There is some freedom in the choice of this
path system, and the resulting operator will depend on it.
There are situations, however, in which the dependence on
the path system drops out, see below. It is important to note

that �Ê, when restricted to S, commutes with the holono-
mies along the path system as long as the surface has no

self-intersections, due to the properties of Êa. We therefore
restrict to that case in the following. Still, there are two
problems with the above definition that have to be re-

solved. The first is that consecutive actions of ÊaðpÞ give
rise to delta distributions that are concentrated precisely at
the boundary of integration enforced by surface ordering,
and a prescription for the evaluation of these has to be
adopted. A straightforward regularization of the delta dis-
tributions results in the prescription

Z
Sn
Ks1;...;sn �eðs1Þ . . .�eðsnÞfðs1; . . . ;snÞ¼

1

n!
fðs; . . . ;sÞ;

where the edge e intersects S in the point s. The second
problem with the above definition is that the operators

ÊIðpÞ at a fixed point p do not commute, whereas the
components EI of the classical field do. Therefore there
is an ordering ambiguity inherent in the above definition.
This ambiguity can be fixed using the Duflo map. This is a
quantization map � from the free algebra of symbols fEIgI
with the Poisson bracket fEI; EJg ¼ fIJ

KEK (f being the
structure constants of a semisimple Lie-algebra g) into the
universal enveloping algebra UðgÞ, extending the map
EI � XI on generators. The defining property of � is
that it is an algebra isomorphism between the invariant
subspaces under the action of the corresponding Lie group
G. � is an improved version of symmetric quantization �,

� ¼ � � j1=2ð@Þ; (4)

where j1=2ð@Þ is a differential operator that can be obtained
by inserting derivatives @I into the following function on g:

j1=2ðxÞ ¼ det1=2
�
sinh12 adx

1
2 adx

�
¼ 1þ 1

48
kxk2 þ . . . ; (5)

with kxk2 ¼ trðad2xÞ the square of the Cartan-Killing norm

ofG. From now on, we will understand the powers of �Ê to
be ordered using �. For the calculations below, we will
only need the action of� on the generators of the invariant
subalgebra. For G ¼ SUð2Þ we find

�ðkEk2Þ ¼ �SUð2Þ þ 1
81; (6)

where �SUð2Þ is the Laplacian.
We finish the definition by considering the action of WS

on the empty state j0i. From the action of Êa it is imme-
diate that WSj0i ¼ I2�2j0i. It turns out, however, that it is
also useful to consider a different regularization, namely
WSj0i ¼ �expð8�ciEÞj0i ¼ c0I2�2j0i with c0 a constant
that is determined entirely by the shift in (6). We will call
this the alternative regularization and compute c0 below.
Properties.—In the following all the surfaces S are

oriented, simply connected, non-self-intersecting. They
will also carry a path system that connects their base point
to all the other points. First of all, let S1 þ S2 be a surface
that can be obtained as a disjoint union of two other
surfaces, S1 and S2. Then, for specific choices of path
systems on S1, S2, and S1 þ S2, such that they all share
the base point, one can see that

WS1þS2 ¼ WS1WS2 : (7)

If we use the alternative regularization for the action on
spin networks without intersection, the above holds only on
states that have at least one intersection in both, S1, S2.
Because of the fact that � commutes with the action of G
one has

Wy
S ¼ W�S; (8)

where here and in the following y means taking both,
transpose and operator adjoint for operator valued matri-
ces. Finally, there is a unitary action Ug of gauge trans-

formations on H , and the operators WS transform
covariantly, i.e.,

UgWSU
�1
g ¼ gðbÞWSgðbÞ�1; (9)

where b is the base point of S.
We note that up to now, we have not made use of any

specific properties of SU(2), and so everything remains
valid for arbitrary semisimple gauge groups G. Let us now
use G ¼ SUð2Þ, fix a surface S, and denote by kji any spin
network state that has a single positively oriented trans-
verse intersection with S at an intersection point p. The
spin on the edge intersecting S is taken to be j. Taking the
trace and considering only single intersections drastically
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simplifies the action ofWS: The holonomies along the path
system drop out completely, and due to tr �� ¼ � � tr
one obtains

trjðWSÞkj0 i ¼ �trj expð8�icEðpÞÞkj0 i:
Then, using

trj expa ¼ sinðð2jþ 1Þ�=2Þ
sinð�=2Þ �2 ¼ � 1

2
kak2

for an element a of su(2), and (6) together with the iso-
morphism property of the Duflo map, one finds

trjðWSÞkj0 i ¼ sin½�cð2jþ 1Þð2j0 þ 1Þ�
sin½�cð2j0 þ 1Þ� kj0 i (10)

¼ trjðgj0 Þkj0 i (11)

with gj0 ¼ expð2�cð2j0 þ 1ÞT3Þ for j0 � 0. For the alter-

native regularization, (11) stays valid for j0 ¼ 0. Otherwise
one has trjðWSÞj0i ¼ 2j0i and we redefine g0 ¼ 1. Either

way, the last line shows that the eigenvalue can be written
as the trace of an SU(2) group element. It follows that any
function of trjðWSÞ, when acting on a state jj0iwill have the
properties expected of traces of an SU(2) element. This
observation seems to even extend to the case of multiple
intersections. One can, for example, show that for two
adjacent surfaces S1, S2, each punctured once by a spin
network jjjjj0 i

tr1=2ðWS1Þtr1=2ðWS2Þkjjj0 i
¼ tr1=2ðWS1þS2Þtr1=2ðWS1W�S2Þkjjj0 i (12)

which is analogous to the property ðtrgÞðtrg0Þ ¼
trðgg0Þtrðgðg0Þ�1Þ for group elements g, g0 of SU(2).
Finally, states kji are not eigenstates of the operator valued
matrices WS. Rather,

WSkji ¼ c1ðjÞI2�2jji þ c2ðjÞj aji;
where c1ðjÞ, c2ðjÞ are constants that are complicated to
compute explicitly, and

j aji ¼ AdhpðTIÞ�IJÊJðpÞkji
carries a new vertex at p and a link between p and the base
point of the loop along the path system on S, see Fig. 1.

Applications.—
Chern-Simons theory.—Since the work ofWitten [12] on

Chern-Simons (CS) theory [13,14], it is well known that
path integral expectation values of holonomy traces in CS
theory are related to link invariants. For G ¼ SUð2Þ and
traces in the defining representation one obtains the
Kauffman bracket, with the conventional variable A re-

placed by q1=4, q ¼ expð2�i=kÞ. [In fact, with CFT meth-
ods on finds q ¼ expð2�i=ðkþ 2ÞÞ [12], but we do not see
the shift of the level with our method.] We will now

demonstrate that our new approach can reproduce some
of these results. The key is that

� 8�i

k
�abc

�

�Ac

eiSCS½A� ¼ Fabe
iSCS½A� (13)

for SU(2) CS theory with level k, and the same, up to a
numerical factor, for other gauge groups. This has been
exploited before [15–17], but we will make use of an
exponentiated version. The non-Abelian version of
Stokes’ theorem suggests that holonomy functionals can
be replaced by the new flux operators under the path
integral. To make this reasoning explicit, let S be a smooth,
oriented, simply connected surface, � some representation
of the structure group G, and L be some functional of
G connections. Then formally

hLtr�ðh@SÞi ¼
Z
A

L½A�tr�ðh@SÞ½A�eiSCS½A�d�½A�

¼
Z
A

L½A�tr�ðWSÞeiSCS½A�d�½A�

¼
Z
A
ðtr�ðW�SÞLÞ½A�eiSCS½A�d�½A�

¼ hðtr�ðW�SÞLÞi: (14)

While the manipulations under the path integral are formal,
taking the first and the last line gives an equality in which
all objects are defined, at least as long as S has no self-
intersections. Consider again G ¼ SUð2Þ and choose c ¼
1=k in the definition of WS. From the above, it follows, in
particular, that the expectation value for unlinked traces of
unknotted loops factorizes. The Kauffman bracket only
factorizes if its value on the unknot is chosen appropriately.
That means that to obtain the correct relationship with the
Kauffman bracket, the expectation value of the trace for an
unknotted loop must have a particular value. For SU(2),
this is precisely the case for the alternative regularization;
thus, we choose it in the following. To go further, let
Hþðj1; j2Þ ¼ trj1ðh	1

Þtrj2ðh	2
Þ denote the right-handed

Hopf link spin network, see Fig. 2.
Applying (14) twice and using (11), one finds

hHþðj1; j2ÞiCS ¼ trj1ðgj2Þtrj2ðg0Þ

¼ sin½�k ð2j1 þ 1Þð2j2 þ 1Þ�
sin½�k�

; (15)

FIG. 1 (color online). New spin networks produced in the
action of the operators WS.
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thus reproducing the known values for the Kauffman
bracket and its generalization [18] for the framing induced
by the choice of the surfaces (see Fig. 2). Note that these
numbers are important in related contexts: they are equiv-
alently given by the trace of the square of the R matrix of
Uqðsuð2ÞÞ on j1 � j2 or, up to normalization, by the
Verlinde coefficients [19] in the SUð2Þk WZW model of
conformal field theory. Similar results can be obtained for
other gauge groups, see, for example, [8] for results on
SU(3) traces in the defining representation.

Black hole horizons.—The quantization of an isolated
horizon (IH) is a remarkable success of LQG [20–28].
However, it is only an effective description, in the sense
that it uses a number of elements that are not intrinsic to the
formalism of LQG. For example, the location of the hori-
zon is fixed to be the boundary of the space-time, and the
fields on the boundary, although related to those in the
bulk, are quantized separately, using a symplectic structure
that is derived from the one on the bulk fields in the
classical theory [27,29]. For spherically symmetric IH,
the pullback to the IH, of the dynamical fields satisfy the
horizon condition [27]

F(ðAÞ ¼ ��ð1� 
2Þ
aH

�
(
ðEÞ: (16)

In the quantum theory, we thus call a surface H a type I
quantum horizon, if (3) is valid for all surfaces S lying
entirely within H. Here, the operators WS are evaluated
with c ¼ ��
ð1� 
2Þ‘2p=2aH. Are there states that con-
tain quantum horizons? Such states do not exist in the
standard representation of LQG, but we argue that we
can change the standard representation on H in such a
way that (3) is satisfied. First, note that we can change
the representation of the holonomies on H without chang-
ing the representations of most other operators [6]. Note
now that a spin network jc i determines puncture data

P ¼ fðp1; j1; m1Þ; ðp2; j2; m2Þ; . . . ; ðpN; jN;mNÞg;

where p1; . . . ; pN are points on H and j1; . . . ; jN and
m1; . . . ; mN are labels of irreducible representations of
SU(2), and magnetic quantum numbers in those represen-
tations. P defines a functional on functions of traces of
loops that encircle at most one puncture:

�

�Y
iki

trkiðh	i
Þ
�
:¼ Y

iki

trkiðgjiÞ: (17)

This functional is positive [6], moreover we have seen
above that it is consistent with all the relations among
these traces. Does � extend to all holonomy functionals
on H? We think so. First of all, while we have not calcu-
lated traces of WS intersecting several loops, we have
shown that the result must satisfy (12) which, together with
(7) generates many, if not all, relations among such traces.
As for gauge noninvariant functionals, we may decompose
them into a gauge invariant part and a functional on a tree
graph, on which we use the standard measure. Changes in
this decomposition should not matter due to the fact that
WS ¼ I2�2 for S not containing any punctures. The details
are under investigation and will be reported elsewhere. We
note that the resulting horizon theory seems to reproduce
many of the results that have been obtained earlier [5,30],
up to the fact that our results point to the theory being
ISU(2) instead of SU(2) CS theory, i.e., Euclidean 3d
gravity [6], due to the fact that on H there remains one
nontrivial holonomy and one flux operator per nontrivial
cycle of H.
Outlook.—In this Letter we have sketched the definition

of new surface operatorsWS in the framework of LQG and
their application to quantum CS theory and black hole
horizons. There are a number of technical results that we
would like to obtain, among them the extension of the
action ofWS to intersections at nontrivial vertices, and their
definition for self-intersecting surfaces. These will make
the operators even more relevant for knot theory. In par-
ticular we hope to apply our methods to the calculation of
Vassiliev invariants. As for applications to quantum IHs, a
rigorous existence proof for the new representations is still
outstanding, as well as a careful investigation of the physi-
cal consequences. We will furthermore consider the use of
the operatorsWS in the SU(2) case as improved momentum
operators in LQG, as they seem to possess many properties
of (quantum) SU(2) group elements. Their use would thus
reduce the asymmetry between configuration and momen-
tum variables present in the standard parametrization.
Finally, it appears that there is a deep relation between the
Duflo map and quantum deformations of Lie groups and
algebras, which should be studied further.
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