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An isolated quantum many-body system in an initial pure state will come to thermal equilibrium if it

satisfies the eigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been

proposed. We first show that von Neumann’s quantum ergodic theorem relies on an assumption that is

essentially equivalent to ETH. We also investigate whether, following a sudden quench, special classes of

pure states can lead to thermal behavior in systems that do not obey ETH, namely, integrable systems. We

find examples of this, but only for initial states that obeyed ETH before the quench.
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Introduction and summary of ETH.—Consider an iso-

lated quantumN-body system with Hamiltonian Ĥ. Let j�i
denote an eigenstate of Ĥ with eigenvalue E�, and let Â
denote a few-body observable. The eigenstate thermaliza-
tion hypothesis (ETH) states that (1) the diagonal matrix

elements A�� ¼ h�jÂj�i change slowly with the state,
with the difference between neighboring values
A�þ1;�þ1 � A�� exponentially small in N, and (2) that

the off-diagonal matrix elements A�� ¼ h�jÂj�i, � � �,

are themselves exponentially small in N [1,2]. ETH is
suggested by various results in quantum chaos theory (in
particular, Shnirelman’s theorem [3] and Berry’s random-
wave conjecture [4]) for systems that have a chaotic clas-
sical limit. ETH has been verified numerically in a wide
variety of quantummany-body systems that are sufficiently
far (in parameter space) from points of integrability [5–8],
but it certainly does not hold in systems that are integrable
or near integrable [5–9].

Let jc ð�Þi be the quantum state of the system at time �,
given by the evolution of some initial state jc Ii ¼P

�C�j�i,
jc ð�Þi ¼ e�iĤ�=@jc Ii ¼

X
�

C�e
�iE��=@j�i; (1)

with
P

�jC�j2 ¼ 1. The energy of the system is �E ¼P
�jC�j2E�, and the quantum energy uncertainty is �E,

where ð�EÞ2 ¼ P
�jC�j2ðE� � �EÞ2. We assume that�E is

algebraically small in N, (e.g., �E� N�1=2 �E), as is the
case for any state of a macroscopic system that could be
realistically prepared in a laboratory. (This is also true for
sudden quenches between Hamiltonians with short-range
interactions [5].) The time-dependent expectation value

of Â is

hÂð�Þi ¼ hc ð�ÞjÂjc ð�Þi
¼ X

�

jC�j2A�� þ X
���

C�
�C�e

iðE��E�Þ�=@A��; (2)

and the long-time average of hÂð�Þi is

�A ¼ lim
�!1

1

�

Z �

0
dthÂð�Þi ¼ X

�

jC�j2A��; (3)

in the absence of degeneracies (which are not expected to
occur in chaotic systems without extra symmetries [10]).
The right-hand side of Eq. (3) effectively sums jC�j2A��

over an energy window of width �E that is centered on �E.
According to ETH, A�� is approximately constant over this
window. Thus, up to algebraically small corrections, the
right-hand side of Eq. (3) has the same value as the micro-

canonical average of Â over the same window, and is
independent of the detailed pattern of values taken by the
jC�j2 coefficients. Thus ETH results in the equality of time
averages and thermal averages for a very broad class of
initial states.
From ETH, each term in the second sum in Eq. (2) is

exponentially small in N. However, the number of terms in
this sum is exponentially large, and so, if the phases line up
coherently, the second sum can rival the first. If this hap-
pens at one particular time (say, � ¼ 0), it will fail at
sufficiently large later times, as the time-dependent phases
go out of alignment. This dephasing mechanism accounts
for the approach to thermal equilibrium for an initially out-
of-equilibrium state [2,5].
The quantum ergodic theorem.—In 1929, von Neumann

proved a mathematical result which has been dubbed the
quantum ergodic theorem (QET) [11]. An exegesis of it has
been given by Goldstein et al. (hereafter GLTZ) [12].
GLTZ summarize QET, or ‘‘normal typicallity’’ as it has
been more recently known, as follows: ‘‘for a typical finite
family of commuting macroscopic observables, every ini-
tial wave function from a microcanonical energy shell so
evolves that for most times � in the long run, the joint
probability distribution of these observables obtained from
jc ð�Þi is close to their microcanonical distribution’’ [12].

More specifically, QET states that hÂð�Þi will be close to

the microcanonical average of Â in the following sense:

jhÂð�Þi � hÂimcj2 < �2hÂ2imc for all but a fraction � of
times t, where the subscript mc denotes the microcanonical
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average over the energy window of all states with nonzero
C�, and � and � are small numbers. The proof of the
theorem requires that all energy eigenvalue differences
E� � E� be nondegenerate, and an additional condition

that is deemed technical by GLTZ, their Eq. (17). Here we
point out that this condition is equivalent to ETH. Hence,
von Neumann’s proof of QET relies on ETH [13].

We follow the exposition of GLTZ, and consider the
system to have a Hilbert space H with an exponentially
large but finite dimension D. We focus on a single observ-

able Â. GLTZ partition the Hilbert space into ‘‘macro-
spaces’’ H �, with dimension d�. Each H � is spanned

by the eigenstates of Â with eigenvalue a in a particular

range centered on a value a�. Let P̂� be the projection
operator onto H �, and consider its energy-basis matrix

elements h�jP̂�j�i. The condition that must be assumed to
prove QET is that, for each �, the off-diagonal elements
(� � �) must be exponentially small, and the diagonal

elements h�jP̂�j�i must be exponentially close to f� ¼
d�=D, the fraction of states in H � [11,12].

We now argue that this condition is effectively equiva-

lent to ETH. Consider the operator Âcg � P
�a�P̂�. This is

a coarse-grained version of Â itself, which can be written as

Â ¼ P
aajaihaj, Âcg is the same, but with the individual

values of a replaced by their average values in each macro-

space. The intention of von Neumann and GLTZ is that Âcg

should be indistinguishable from Â in practical experi-
ments. Next, consider the energy-basis expectation value

h�jÂcgj�i. Since h�jP̂�j�i is (by the GLTZ technical

condition) exponentially close to f�, then from the defini-

tion of Âcg we get h�jÂcgj�i ¼ P
�a�f�, up to exponen-

tially small corrections. Up to the additional small errors
introduced by the coarse graining (which are assumed to be

negligible), this last expression is equal to the trace of Â,
which in this simplified model is to be identified with the

microcanonical average of Â. This is equivalent to the ETH
statement that an energy-basis expectation value is equiva-

lent to a microcanonical average. Similarly, if h�jP̂�j�i is
exponentially small for � � �, so is h�jÂj�i, which is the
other key part of ETH [2,5].

Another way to phrase the equivalence is to note that
both the GLTZ technical condition and ETH rely on ex-
ponential smallness of the overlap between an energy

eigenstate and an eigenstate of an observable Â that ex-
hibits thermal behavior. As already noted, ETH can be
justified by various results from quantum chaos theory.
Thus, ETH provides a physical basis for the technical
condition needed by QET. This results in a unification of
two formerly disparate schools of thought on the founda-
tions of statistical mechanics.

Quantum quenches.—As mentioned in the introduction,
ETH has been shown to be satisfied in a variety of non-
integrable quantum systems. It has been found to break
down only as one approaches integrable points [6–8], or

in special regimes that are dominated by finite size effects,
e.g., close to the atomic limit [14,15]. Thermalization itself
has been shown to be robust in nonintegrable systems after a
(sudden) quench, once again, failing to occur close to
integrable points [6,16,17] or the atomic limit [15,18], and
in localized disordered systems [19]. Here, by (sudden)
quench, we mean that the system is prepared in an eigen-
state of some initial Hamiltonian (not necessarily the
ground state) and then at � ¼ 0 the Hamiltonian is changed.
We now consider systems that do not satisfy ETH; in

particular, we consider systems for which A�� varies sig-
nificantly [that is, by an amount that is OðN0Þ] with �. It is
easy to construct such systems; for example, any set of

noninteracting degrees of freedom, with Â corresponding
to any one- or few-body observable, is in this class.
Interacting systems that are integrable (with as many con-
served charges as degrees of freedom) are in this class [20].
Equation (3) still applies to such systems; but now whether

or not �A is close to the thermal average of Â depends
strongly on the initial state, which is specified by the C�

coefficients. If the values of the coefficients jC�j2 in Eq. (3)
provide an unbiased sampling of the matrix elements A��,
then we can expect �A to be algebraically close to the

microcanonical average of Â over the energy window
specified by the �E of the initial state.
The above scenario, however, does not occur in

quenches between integrable systems, i.e., when the initial
state is an eigenstate of an integrable system, and the time
evolution is studied after changing some parameters in the
Hamiltonian while keeping the system integrable. Studies
of several models have shown that �A remains different
from the thermal expectation as one approaches the ther-
modynamic limit [9,21–34]. Even some special initial
states that were seen to lead to �A similar to the ones
predicted in thermal equilibrium [9,21,28], have been re-

cently shown not to result in the thermalization Â in the
thermodynamic limit [32,34].
Here we identify a class of initial states that leads to

thermal behavior after a quench to an integrable point. The
initial states we consider are eigenstates of an initial

Hamiltonian ĤI that is nonintegrable. This Hamiltonian
is constructed by breaking the integrability of the final

Hamiltonian ĤF; i.e., we set ĤI ¼ ĤFþ ‘‘integrability
breaking terms.’’ The idea here is that the integrability
breaking terms in the initial Hamiltonian generate eigen-
states that are unbiased combinations of eigenstates of the
integrable (final) Hamiltonian. This is what leads to chaotic
behavior as one departs from an integrable point [7], and
ultimately allows ETH to be valid in nonintegrable sys-
tems. Hence, such initial states enable the desired unbiased
sampling that does not occur in quenches between inte-
grable systems.
In order to show that this is indeed the case, we have

studied one-dimensional lattice systems of hard-core bo-
sons and spinless fermions with the Hamiltonian
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H ¼ XL
j¼1

�
�tðĉyj ĉjþ1 þ H:c:Þ � t0ðĉyj ĉjþ2 þ H:c:Þ

þ V

�
n̂j � 1

2

��
n̂jþ1 � 1

2

�
þ V 0

�
n̂j � 1

2

��
n̂jþ2 � 1

2

��
;

(4)

where ĉyj (ĉj) stands for the creation (annihilation) operator
for hard-core bosons and fermions, n̂j ¼ ĉyj ĉj is the site

occupation operator, L is the number of lattice sites, and t
(t0) and V (V 0) are the nearest (next-nearest) neighbor
hopping and interaction, respectively. The t0, V0 terms are
the ones that make this Hamiltonian nonintegrable. We
consider periodic boundary conditions, and the full diago-
nalization of the Hamiltonian is done using its translational
symmetry. The filling is always taken to be N ¼ L=3.

Our quench protocol is then as follows, we generate an
initial state jc Ii that is an eigenstate of Eq. (4) with t ¼
V ¼ 1 (this sets our energy scale), t0 ¼ V 0 � 0, and which
lies within the sector of zero total momentum. The final
Hamiltonian, after the quench, still has t ¼ V ¼ 1, but we
set t0 ¼ V0 ¼ 0. This Hamiltonian is integrable. We then
study the relaxation dynamics of various observables, as
well as their description after relaxation, for many different
initial states. These initial states are eigenstates of
Hamiltonians with different values of t0, V 0, and are se-
lected so that the system can have different final effective
temperatures. The effective temperature T is calculated
using the standard procedure for the canonical ensemble,

i.e., such that E ¼ Z�1TrðĤFe
�ĤF=kBTÞ, where E ¼

hc IjĤFjc Ii is the energy of the time evolving state, Z ¼
Trðe�ĤF=kBTÞ is the partition function, and kB (set to one in
what follows) is the Boltzman constant.

We have studied four observables, the kinetic energy K̂,

the interaction energy Û, the momentum distribution func-
tion n̂k (which is the Fourier transform of the one-particle

correlations �̂ij ¼ ĉyi ĉj), and the structure factor N̂k

(which the Fourier transform of the density-density corre-

lations N̂ij ¼ n̂in̂j). K̂ and Û are local observables while

n̂k and N̂k are nonlocal, and K̂ and n̂k are single-body

observables while Û and N̂k are two-body observables. In
all cases studied, we found a similar qualitative behavior in
those four quantities. Hence, we will only report results for
n̂k, which is the onewith the closest connection to ultracold
gases experiments [35–38].

We are first interested in understanding how, after the
quench, observables relax (if they do) to the long-time
average in Eq. (3). For n̂k, this can be conveniently quanti-
fied by calculating the normalized integrated difference

�nkð�Þ ¼
P
k

jhn̂kð�Þi � �nkj
P
k

�nk
: (5)

Results for �nkð�Þ are shown in Fig. 1 for bosons (left
column) and fermions (right column) and for two different
system sizes. For very small quenches [Figs. 1(a) and 1(e)],
the initial state has a nonzero overlap only with very few
close-by eigenstates of the final Hamiltonian. Because of
this, the long-time average is close to the initial nk, and
large oscillations (relative to the time average) can be seen
for both bosons and fermions. By increasing the amplitude
of the quench, the long-time average becomes increasingly
different from the initial momentum distribution, and the
time fluctuations decrease. This is because more eigen-
states of the final Hamiltonian are involved in the dynamics
and dephasing becomes more efficient. It is interesting to
note the strikingly large finite size effects seen for the
spinless fermions [Fig. 1(e)–1(g)], where the dynamics
changes (improves) dramatically by increasing the system
size from L ¼ 21 to L ¼ 24 [6,7]. Overall, one can con-
clude from those results that, as the system size increases,
nk relaxes to the long-time average rather quickly (��
@=t), and the time fluctuations around that average become
very small. Similar results were found for other observ-
ables and effective temperatures.
We then are left to check how accurate statistical en-

sembles are when predicting �nk. For our small finite sys-
tems, we use the microcanonical ensemble, and calculate
the following normalized integrated difference to quantify
its accuracy

�nk ¼
P
k

jhn̂kimc � �nkj
P
k

�nk
: (6)

The width �E of the energy window in the microcanonical
ensemble is taken such that the results are robust to small
changes of �E (in our systems �E� 0:1–0:3).
Figure 2 depicts our results for �nk, calculated for

bosons (a) and fermions (b), and for L ¼ 24 (main panels)
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t’=V’=0.64
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t’=V’=0.16
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FIG. 1 (color online). Time evolution of �nk, after a sudden
quench, for hard-core bosons (left panels) and spinless fermions
(right panels) in lattices with L ¼ 21 and L ¼ 24 (N ¼ L=3),
and T ¼ 3. Results are presented for quenches from t0 ¼ V0 ¼
0:04 (a),(e), t0 ¼ V 0 ¼ 0:16 (b),(f), t0 ¼ V0 ¼ 0:32 (c),(g), and
t0 ¼ V0 ¼ 0:64 (d),(h), to t0 ¼ V0 ¼ 0. In all cases t ¼ V ¼ 1
before and after the quench.
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and L ¼ 21 (insets). In that figure, it is apparent that nk is
nonzero, and large, for small values of t0; V 0. This is true
even in the absence of a quench, when t0 ¼ V 0 ¼ 0 in the
initial and final Hamiltonian, and reflects the failure of
ETH due to integrability. However, as the value of t0; V 0
is increased, nk is seen to decrease in all cases. This occurs
for bosons and fermions at all effective temperatures and
system sizes. For all observables and effective tempera-
tures that we have studied, we have found that �nk de-
creases with increasing system size. This, together with the
understanding of the role of the integrability breaking
terms in the initial Hamiltonian, supports our claim that
initial states that satisfy ETH (eigenstates of a nonintegr-
able Hamiltonian) will lead to thermalization in integrable
systems, despite the fact that the latter do not satisfy ETH.

In Fig. 2, one can also see that, in many instances, �nk
for a fixed system size reaches a minimum value and then
increases as t0 and V 0 are increased. This occurs because,
for large values of t0, V 0, the initial state starts having large
overlaps with eigenstates outside the microcanonical en-
ergy window. Hence, even though the initial state is sam-
pling more eigenstates of the final Hamiltonian, the energy
density becomes broad and the microcanonical ensemble
once again becomes a bad approximation for the long-time
average. The fact that more eigenstates of the final
Hamiltonian are part of the initial state can be quantified

by means of the inverse participation ratio (IPR) IPR ¼
1=
P

�jC�j4. This quantity has been shown to increase in
eigenstates of nonintegrable many-body Hamiltonians as
one departs from an integrable point [7]. On the other hand,
the fact that the weight of the initial state within the micro-
canonical window decreases if the value of t0, V 0 becomes
too large can be quantified calculating W ¼ P

�0 jC�0 j2,
where only eigenstates �0 inside the microcanonical win-
dow are added.
Then, one can compute a ‘‘normalized IPR,’’ which is

the product of the IPR and W. For finite systems, this
quantity can tell us how effective t0, V 0 are in sampling
states within the microcanonical window. Results for this
quantity are depicted in Fig. 3, for the same quenches
depicted in Fig. 2. Figure 3 shows that, in the region where
�nk exhibits a sharp decrease in Fig. 2, the normalized IPR
increases. In addition, where �nk saturates or increases in
Fig. 2, the normalized IPR saturates or decreases in Fig. 3.
This allows one to understand the overall behavior of �nk
in Fig. 2. However, we should stress that the fact that t0, V0
(or whatever other term is used to break integrability)
cannot be made too large is only a concern for finite
systems. As long as these terms are kept OðN0Þ and the
interactions have finite range, the energy width of any
initial state after the quench will vanish in the thermody-
namic limit [5], and the initial state will only sample states
within the microcanonical window.
Conclusions.—In this Letter we have further probed the

role of the eigenstate thermalization hypothesis (ETH) as
the key dynamical feature of systems that come to thermal
equilibrium. We have shown that von Neumann’s quantum
ergodic theorem (QET) relies on a technical assumption
that is in fact essentially equivalent to ETH. We have also
examined whether, after a sudden quench, eigenstates of
the initial Hamiltonian can lead to thermal behavior in
systems that do not obey ETH. We have found that this is
possible, but only if those eigenstates obeyed ETH before
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age, as a function of t0, V0 in the initial Hamiltonian. Results are
reported for hard-core bosons (a) and spinless fermions (b), for
lattices with 24 sites (main panels) and 21 sites (insets). In all
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the quench. These results further support the fundamental
role of ETH in thermal behavior of quantum many-body
systems.
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