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We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a

quantum computer, a class of open tensor networks representing quantum states. The run time of our

algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors

and, essentially, with the inverse of the spectral gap of the PEPS’s parent Hamiltonian.
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Projected entangled pair states (PEPS) [1] have been
proposed as a class of quantum states especially suited to
describe the ground states of local Hamiltonians in quan-
tum many-body physics. PEPS are a higher-dimensional
generalization of the one-dimensional matrix product
states (MPS) [2], for which many interesting properties
have been proven. For example, MPS provably approxi-
mate the ground state of 1D local Hamiltonians with
constant spectral gap [3,4] and exhibit an area law [4] as
well as an exponential decay of two-point correlation
functions. Furthermore, for each MPS with the injectivity
property [5], a parent Hamiltonian can be constructed with
this MPS as its unique ground state. MPS can also be
prepared efficiently on a quantum computer [6]. PEPS,
however, form a much richer class of states and can, e.g.,
represent critical systems and systems with topological
quantum order [7]. It is conjectured that all ground states
of gapped local Hamiltonians in higher dimensions can be
represented faithfully as PEPS, and although there are
strong indications for this fact, this has not been proven.
What is clear, however, is the fact that one can also con-
struct parent Hamiltonians for them [5], and the PEPS will
be the unique ground states of those Hamiltonians if the
PEPS obeys the so-called injectivity condition [5]. Many
physically relevant classes of PEPS on lattices are known
to be almost always injective, including, e.g., the 2DAKLT
state [5,8]. A particularly interesting subclass of PEPS is
the one that consists of all those states whose parent
Hamiltonian have a gap that scales at most as an inverse
polynomial as a function of the system size: in that case, a
local observable (i.e., the local Hamiltonian) allows us to
distinguish the state from all other ones, as the ground state
always has energy zero by construction. However, it was an
open problem [7] whether such states could even be cre-
ated on a quantum computer, as an algorithm that would
allow us to prepare any PEPS would allow for the solution
of PP-complete problems [9].

In this Letter we show how well-conditioned injective
PEPS can be efficiently prepared on a quantum computer.
The key idea of our approach is to grow the PEPS step by
step. We demand that not only our final PEPS is the unique
ground state of its parent local Hamiltonian, but also that

there exists a sequence of partial sums of the local terms of
the parent Hamiltonian, such that each partial sum has a
unique ground state of its own. Based on this assumption,
the algorithm starts with a physical realization of the va-
lence bond pairs as its initial state and iteratively performs
entangling measurements on the virtual particles to map
virtual degrees of freedom to physical ones, just as in the
definition of the PEPS. The PEPS is called injective, if and
only if this map is (left) invertible, which can only be the
case if the dimension of the physical space is actually at
least as large as the dimension of the virtual space at each
vertex. Preparing a PEPS by measurements may seem to
require postselection to project onto the right measurement
outcome. To overcome this issue we use the Marriott-
Watrous trick [10,11] of undoing a measurement based on
Jordan’s lemma [12] and combine it with the uniqueness
property of injective PEPS [5] to prepare the required
eigenstates. A key element that contributes to the success
of this algorithm is the fact that the measurements are not
done locally, such as in the framework of dissipative quan-
tum state engineering [13], but globally by running a phase
estimation algorithm that singles out the ground subspace; a
similar approach was used in the context of the quantum
Metropolis sampling algorithm [14]. Alternatively, meth-
ods for eigenpath traversal [15,16] can also be applied [17].
Definitions and results.—Before stating the result, we

review the definition of PEPS and their essential properties.
Recall [1,5] that PEPS are quantum states defined over an
arbitrary graph G ¼ ðV; EÞ such that quantum systems of
local dimension d are assigned to each vertex. We con-
struct the PEPS by assigning to each edge e 2 E a maxi-
mally entangled state

P
D
i¼1 jiii. In this way, a vertex v 2 V

with degree k gets associated with k virtual D-dimensional

systems. Finally, a map AðvÞ:CD � CD � � � �CD � Cd is
applied to each vertex, taking the k virtual D-dimensional
systems to a single physical d-dimensional system. The

linear map AðvÞ is usually called the PEPS ‘‘projector’’

and is parametrized by tensors AðvÞ
i as follows: AðvÞ ¼P

d
i¼1

P
D
j1;...;jk¼1 A

ðvÞ
i;j jiihj1; . . . ; jkj, where AðvÞ

i is a tensor

with k indices. The PEPS can now be written as

jc i ¼ Pd
i1;...;in¼1 C½fAðvÞ

iv
gv�ji1; . . . ; ini, where C means the
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contraction of all tensors AðvÞ
i according to the edges of the

graph. In the most general case the virtual index dimension
D as well as the physical index dimension d may also
depend on the edges e and vertices v of the interaction
graph, but we suppress this detail in favor of simplicity.

Note, that without loss of generality AðvÞ � 0 may be

assumed, since for arbitrary ~AðvÞ we can choose a local

basis by performing a polar decomposition, i.e., ~AðvÞ ¼
UðvÞAðvÞ with UðvÞ unitary and AðvÞ � 0.

A PEPS jc i is called injective [5] if each PEPS projector
AðvÞ has a left inverse. For some PEPS this may only be true
after some local contractions of a constant number of PEPS

tensors AðvÞ according to the interaction graph of the PEPS
forming new projectors ÂðvÞ for which the condition above
holds. Since this blocking can be performed efficiently for
constant degree graphs, we may assume for the remainder
of this Letter that it has already been performed, such that

each individual AðvÞ in our input is already injective by
itself. Note that the existence of a left inverse allows us to

strengthen the assumption AðvÞ � 0 without loss of gener-

ality to AðvÞ > 0 for all v.
For injective PEPS, there is a simple construction [5] of

a 2-local parent Hamiltonian, such that the injective PEPS

is its unique, zero-energy ground state. This construction

gives a parent Hamiltonian for a quantum system consist-

ing of n particles with d-dimensional Hilbert spaces.
Let H be a Hermitian matrix with �0 < �1 its smallest

and second smallest eigenvalues. Then we call �ðHÞ ¼
�1 � �0 the spectral gap of H. For any matrix A, the

condition number �ðAÞ is defined as �ðAÞ ¼ �maxðAÞ
�minðAÞ , where

�maxðAÞ and �minðAÞ are the largest and smallest singular
values of A, respectively. We are now in a position to state
the performance of our algorithm as our main theorem:

Theorem 1: Let G ¼ ðV; EÞ be an interaction graph
with bounded degree and some total order defined on V.

Let fAðvÞgv2V½t� be a set of injective PEPS projectors of

dimension d�Dk associated with each v in V up to vertex
t (according to the total vertex order) describing a sequence

of PEPS jc ti, and let � ¼ maxv2V�ðAðvÞÞ be the largest
condition number of all PEPS projectors. Let � ¼
mint�ðHtÞ, where �ðHtÞ is the spectral gap of the parent
Hamiltonian Ht of the PEPS jc ti. Then there exists a
quantum algorithm generating the final PEPS jc jVji with
probability at least 1� " in time ~OðjVj2jEj2�2

"� þ jVjkd6Þ.
Algorithm.—Conceptually, PEPS are constructed by first

preparing entangled pair states jc i ¼ P
ijiii for each edge

of the interaction graph describing the PEPS, and then
projecting the k virtual indices associated with each vertex
to a single physical index. While this construction is usu-
ally considered only a theoretical device, the proposed
algorithm is indeed simulating the above construction for
the case of injective PEPS with gapped Hamiltonians. This
entails making the virtual indices physical as well.

Figure 1 presents our algorithm in pseudocode. We
proceed by explaining each step in detail. PEPS construc-
tion starts in step 2 by distributing maximally entangled
states of the desired bond dimension according to the
interaction graph G ¼ ðE;VÞ. The resulting system is the
zero-energy ground state of a simple Hamiltonian H0

consisting purely of terms projecting onto He ¼
1� 1

d

P
d
i;j¼1 jiiihjjj for each edge of the interaction graph

(step 3). Note that this simple Hamiltonian is gapped.
We now describe the main iteration of the algorithm

(step 4), which is illustrated in Fig. 2. In steps 4(a)–4(c),
after having selected the next vertex v of the interaction
graph according to the total vertex order, we construct a
new Hamiltonian Htþ1 from Ht. First, we select a
d-dimensional ‘‘physical’’ subspace from the
Dk-dimensional space at each vertex v. This subspace is

represented by projector PðvÞ
phy. Then we remove for each

neighboring vertex v0 of v the termHðv;v0Þ
t . These are either

trivial He terms or temporary boundary terms (see below).

Next we compute the new parent Hamiltonian termsHðv;v0Þ
tþ1

according to [5] and add them to Htþ1 reflecting the

application of AðvÞ. Restricted to the physical subspace

FIG. 1. Algorithm constructing injective PEPS.
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PðvÞ
phy, each Hðv;v0Þ is simply a sum of 2-local terms over all

edges e from v to vertices v0. Note that parent Hamiltonian

terms Hðv;v0Þ towards any open ‘‘virtual index’’ v0 are only
temporary boundary terms which are computed in exactly
the sameway just as those for any other vertex by assuming
the identity as the applicable PEPS map. Since the identity
is trivially invertible, each intermediate PEPS is also in-
jective and thus the unique ground state of the intermediate
HamiltonianHtþ1. Since the physical d-dimensional space
is just a subspace of the Dk ‘‘virtual’’ space that is in fact

also implemented physically in this algorithm, HðvÞ is
actually a sum of 2k-local projectors. In order to ensure
we produce a state with a single d-dimensional local space
associated to each vertex v in the final PEPS, we add an

extra term HðvÞ
phy ¼ cð1� PðvÞ

phyÞ in this step. This term

penalizes the orthogonal complement of the chosen sub-
space with some energy c � �.

Note that, prior to the execution of step 4(d), the system
is in the ground state jc ti of Ht by construction. This
ground state is unique by the injectivity assumption we
make for each intermediate PEPS jc ti prepared in each
iteration. In order to transition to the ground state jc tþ1i of
Htþ1, we run the phase estimation [18] algorithm for
Hamiltonian Htþ1, perform a binary measurement to
project jc ti onto the zero- or nonzero-energy subspaces
of Htþ1, and uncompute the phase estimation [step 4(d)].
This step requires an inverse eigenvalue gap ��1 between
these two subspaces that scales with OðpolyðjVjÞÞ for the
phase estimation to be efficient and precise enough [19].
We assume that such a gap exists for each intermediate
parent Hamiltonian Ht that we construct according to the
total vertex order defined on the interaction graph.

If the measurement results in the projection onto the
zero-energy subspace of Htþ1 we proceed to the next
iteration [step 4(e)]. By Lemma 2, this event occurs with

probability at least �ðAðvÞÞ�2, where �ðAðvÞÞ is the condi-

tion number of PEPS projector AðvÞ associated with vertex
v. Note that the injectivity property of the PEPS assures

that each �ðAðvÞÞ is a positive constant. If the measurement

projects onto the excited subspace of Htþ1, we undo the
measurement by measuring Ht again [step 4(e)i]. If this
second measurement results in a projection on the ground
state, we have exactly undone the (unsuccessful) measure-
ment of Htþ1, otherwise the system is in the excited sub-
space of Ht. In both cases the projection onto the ground
state of Htþ1 can now be attempted again, with success

probabilities �ðAðvÞÞ�2 and 1� �ðAðvÞÞ�2, respectively
[step 4(e)ii]. By Lemma 3, the inner loop will succeed in
projecting onto the ground state ofHtþ1 with probability at
least 1� 1

2es after at most �2s attempts, with s chosen as

s ¼ jVj
2e" . Once all jVj vertices have been covered, the outer

loop terminates with the PEPS jc i in its output register
with probability at least 1� ", as shown in Theorem 1.
Bounding the transition probabilities.—As a first step in

our analysis, we need a lower bound on the transition
probability from jc ti to jc tþ1i. To this end we proof the
following lemma.
Lemma 2: Let jc ti ¼ 1ffiffiffiffi

Zt

p jAti be the normalized PEPS

jAti, where jAti is the unnormalized partial PEPS resulting

from the contraction of PEPS projectors AðvÞ for all vertices
v processed in the algorithm up to step t and let
Zt ¼ hAtjAti. Let jAtþ1i ¼ Atþ1jAti, where Atþ1 is the
PEPS projector of time step tþ 1. Then jhc tþ1jc tij2 �

1
�ðAtþ1Þ2 > 0.

Proof.—A simple calculation shows

hc tþ1jc ti ¼ 1ffiffiffiffiffi
Zt

p 1ffiffiffiffiffiffiffiffiffiffi
Ztþ1

p hAtjAy
tþ1jAti (1)

� 1ffiffiffiffiffi
Zt

p 1ffiffiffiffiffiffiffiffiffiffi
Ztþ1

p hAtjAy
tþ1Atþ1jAti

�maxðAtþ1Þ (2)

¼ 1ffiffiffiffiffi
Zt

p 1ffiffiffiffiffiffiffiffiffiffi
Ztþ1

p Ztþ1

�maxðAtþ1Þ (3)

¼ 1

�maxðAtþ1Þ
�
Ztþ1

Zt

�
1=2

; (4)

FIG. 2. In each step the algorithm processes one vertex v: Ht is grown into Htþ1 by removing all existing terms referring to v before
the 2k-local parent Hamiltonian terms are added implementing PEPS projector AðvÞ at v. Note that terms around v connecting to an
open virtual index v0 (bonds with dotted border) are only temporary and are removed in later steps of the algorithm. All terms

constraining a vertex v only restrict the physical subspace PðvÞ
phy, while degrees of freedom in the orthogonal subspace (1� PðvÞ

phy) are

eliminated with an additional penalty term HðvÞ
phy that is added per vertex.
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where the inequality follows from the operator inequalities

Atþ1 � 0 and Atþ1

�maxðAtþ1Þ
� 1. This implies

jhc tþ1jc tij2 � 1

�maxðAtþ1Þ2
Ztþ1

Zt

: (5)

But

Ztþ1 ¼ hAtjA2
tþ1jAti � �minðAtþ1Þ2hAtjAti (6)

¼ �minðAtþ1Þ2Zt: (7)

Thus Eqs. (5) and (7) yield the claim

p ¼ jhc tþ1jc tij2 �
�
�minðAtþ1Þ
�maxðAtþ1Þ

�
2 ¼ 1

�ðAtþ1Þ2
: (8)

Finally, the injectivity assumption of PEPS jc tþ1i implies
left invertibility of Atþ1 for each v; thus, �ðAtþ1Þ is finite;
therefore p > 0. j

Bounding the convergence rate.—In this section we
analyze the termination probability of the loop at step 4(e).

Lemma 3: Let Ht;Htþ1 be Hamiltonians with unique
zero-energy ground states jc ti and jc tþ1i, respectively.
Let s be a positive integer. If the system is in state jc ti
initially, then the measurement process alternatingly
measuring Htþ1 and Ht and stopping once jc tþ1i is
reached, takes the system to state jc tþ1i with probability
at least 1� 1

2es after at most s=p alternations, where

p ¼ jhc tþ1jc tij2.
Proof.—Let P;Q be the ground state projectors of Ht

andHtþ1, respectively, and letP
? ¼ 1� P,Q? ¼ 1�Q.

By Jordan’s lemma, there exists an orthonormal basis in
which the Hilbert space decomposes into (1) two-
dimensional subspaces Si invariant under both P and Q,
and (2) one-dimensional subspaces Tj on which PQ is

either an identity or a zero projector [11].
Since we know that jc ti and jc tþ1i are the unique 1-

eigenstates of P and Q with overlap
ffiffiffiffi
p

p
, exactly one Si is

relevant to our analysis. This two-dimensional subspace is
spanned by both jc ti and some jc?

t i, as well as by jc tþ1i
and some jc?

tþ1i. Among these four vectors, we have the
following relationships [10]:

jc ti ¼ � ffiffiffiffi
p

p jc tþ1i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p jc?
tþ1i; (9)

jc?
t i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p jc tþ1i þ ffiffiffiffi
p

p jc?
tþ1i; (10)

jc tþ1i ¼ � ffiffiffiffi
p

p jc ti þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p jc?
t i; (11)

jc?
tþ1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p jc ti þ ffiffiffiffi
p

p jc?
t i: (12)

Considering these symmetrical relations, we see that alter-
nating measurements of Ht and Htþ1 generate a Markov
process among these four states. Since the process termi-
nates whenever it hits jc tþ1i, the only histories which can
keep the process from terminating are those with an initial

transition jc ti ! jc?
tþ1i and which then keep repeating

either one of the following two pairs of transitions

jc?
tþ1i ! jc ti ! jc?

tþ1i; (13)

jc?
tþ1i ! jc?

t i ! jc?
tþ1i; (14)

which occur with probabilities ð1� pÞ2 and p2, respec-
tively. Thus the process terminates after at most 2mþ 1
measurements with probability

ptermðp;mÞ ¼ 1� ð1� pÞ½p2 þ ð1� pÞ2�m: (15)

To lower bound this probability we upper
bound pfailðp;mÞ ¼ 1� ptermðp;mÞ as pfailðp;mÞ �
ð1� pÞ exp½�2mpð1� pÞ�, which follows from ð1�
qÞm � e�qm, for 0 � q � 1 and m � 0. Finally we choose
m as a multiple of 1

p and find pfailðp; s=pÞ � 1
2es , which can

be seen by straightforward calculus. j
Proof of Theorem 1.—We complete the proof of

Theorem 1 by using Lemma 3 for bounding the failure
probability pfail of the inner loop to derive a lower bound
on the success probability of the outer loop over all vertices

in V. That is, we have to show that ð1� pfailÞjVj � 1� ".

Since ð1� pfailÞjVj � 1� jVjpfail by truncating higher-
order terms from the binomial series and assuming
jVj> 1 it suffices to show jVjpfail � ". Using Lemma 3,

we find the first inequality of jVjpfail � jVj
2es � ", while the

second inequality is satisfied by choosing s � jVj
2e" . Thus,

for the algorithm to succeed with at least probability 1� "

we have to choose m � s
p � jVj

2pe" . Since we know from

Lemma 2 that p � 1
�2 , choosing m � �2jVj

2e" � jVj
2pe" suffices.

Thus the inner loop performs at most 2mþ 1 � �2jVj
e" mea-

surements. The outer loop iterates over jVj vertices; thus,
the total number of measurements is less than �2jVj2

e" þ jVj.
Bookkeeping of the active Hamiltonian terms in the outer
loop requires a total time ofOðjVjkÞ using simple arrays as
data structures and OðjVjkd6Þ to compute all parent
Hamiltonian terms, both of which are dominated by the
OðjVj2Þ time of the inner loop for small d. Finally, since

each phase estimation step requires ~OðjEj2=�Þ [11,18,19],
where ~Oð�Þ suppresses more slowly growing factors such

as exp½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðjEj=�Þp � [20], we find a total run time of

~OðjVj2jEj2�2

"� þ jVjkd6Þ. This completes the proof of

Theorem1. j
Conclusion.—In this Letter we have shown how to con-

struct quantum states described by injective PEPS in poly-
nomial time by first reducing the problem to the generation
of a sequence of unique ground states of certain
Hamiltonians and then preparing that sequence. In future
work we will focus on extending the class of preparable
PEPS and possible performance improvements following
from the results of [16,21,22].
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