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The amount of correlation attainable between the components of a quantum system is constrained if the

system is closed. We provide some examples, largely from the field of quantum thermodynamics, where

knowing the maximal possible variation in correlations is useful. The optimization problem it raises

requires us to search for the maximally and minimally correlated states on a unitary orbit, with and

without energy conservation. This is fully solvable for the smallest system of two qubits. For larger

systems, the problem is reduced to a manageable, classical optimization.
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The idealized notion of a closed system is central to both
classical and quantum mechanics, across scales from the
microscopic to the Universe itself. Here, we concern our-
selves with the quantum mechanical version of a funda-
mental question: In the interactions between the
constituent components of a closed system, to what extent
does the closure of the system constrain the correlations
attainable?

We focus on the simplest case, where we divide the
closed system into two parts and the correlations between
these are quantified by the mutual information. For a given
bipartite state of the system, we therefore seek the two
extremal (minimally and maximally) correlated states
under all evolution that do not change the total entropy.
We will also consider the case of evolution that obeys the
additional restriction of energy conservation, either in a
weak sense (the expected energy stays constant) or a strong
sense (the interaction commutes with the free
Hamiltonians of the two subsystems).

We find that the answer to these problems, particularly
for the case of the minimal attainable correlation, has a
surprisingly rich mathematical structure. Because of the
foundational nature of this result, it can be applied to a
range of problems. Before turning to our technical results,
we present in some detail three such examples from the
field of quantum thermodynamics.

Example 1: Environmentally friendly work extraction
from a Szilard engine.—Our first example concerns a
Szilard engine immersed in a thermal bath at temperature
T using correlated particles from which to extract work.
The engine admits individual subsystems, one at a time, to
‘‘burn as fuel.’’ We consider the case of two quantum
subsystems, described by a bipartite mixed state �. For
such fuel reserves, we can extract [1] from each subsystem
at most an amount of work W� ¼ kT½logd� � Sð��Þ�,
where d� is the dimension of subsystem � 2 fA; Bg, ��

is its state, and Sð��Þ ¼ �trð�� log��Þ is its

von Neumann entropy. The goal is to increase the total
work extracted from the pair of systems:

W ¼ WA þWB ¼ kT½logdAdB � Sð�AÞ � Sð�BÞ�:
To do so, before the systems are fed into the engine, they
are sent into a refinery whose purpose is to ‘‘purify’’ �A

and �B so as to reduce Sð�AÞ þ Sð�BÞ. More accurately, the
refinery tries to localize existing purity in the composite
fuel state. Such a purification scheme has been considered
before under the restriction of local operations and classi-
cal communication (LOCC) processes [1,2]; however, here
we work in a broader context and permit a global operation
on the composite fuel state �, but crucially we impose the
restriction that the refining process, which takes � to �0,
must be ‘‘environmentally friendly’’ in the sense that all
measures of purity, such as the von Neumann entropy or
tr½�2�, remain constant [3]. As a result, we are forced into
taking the refining process to be a global unitary operation
on the full reserve of fuel.
The extra mechanical work obtained through the refin-

ing process is Wextra ¼ �kTð�SA þ�SBÞ ¼ �kT�I,
where �S� ¼ Sð�0

�Þ � Sð��Þ and �I ¼ Ið�0Þ � Ið�Þ,
and we have introduced the quantum mutual information
(QMI) Ið�Þ ¼ Sð�AÞ þ Sð�BÞ � Sð�Þ � 0, which is the
natural measure of correlations. If A and B are initially
uncorrelated, the QMI is at its minimum and cannot be
reduced; Wextra ¼ 0. However, if correlations are initially
present in �, it is possible to obtain jWextraj> 0: a natural
challenge is to find the maximum jWextraj for a given initial
state fuel reserve � or, in other words, to determine the
largest attainable j�Ij under the environmentally friendly
constraint. Generically, it is impossible to fully decorrelate
the state, and the optimal refinement process reduces to the
broader problem under consideration in this article.
Example 2: Anomalous heat flow in the presence of

correlations.—It is known for two subsystems of a closed
system, each initially in thermal states, that the traditional
thermodynamic flow of heat from hot to cold can be
distorted by the presence of correlations [4,5]. Indeed,
with sufficiently strong correlations, a substantial amount
of heat can be made to flow anomalously from the colder to
the hotter system. What are the limitations on this process?
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Again, let � be the initial joint state of the two systems,
� 2 fA; Bg. By assumption, each subsystem is initially in a
thermal (Gibbs) state �� ¼ �th

� ¼ e���H�=Z� at tempera-

ture ��1
� ¼ kT�, where Z� ¼ trðe�H�=T�Þ is the partition

function. The subsystems interact, either by switching on a
known controlled interaction for some finite time or by a
scattering process, and the composite state � evolves to a
final state �0, which has local states �0

A and �0
B.

The free energy functionalFH;T½�� :¼ trð�HÞ � kTSð�Þ
is obtained from the relative entropy function with respect
to the Gibbs state and is defined over the full state space. It

is minimized by the thermal state eð��HÞ=tr½eð��HÞ�,
��1 ¼ kT, and its value coincides with the usual thermo-
dynamic free energy. Thus, each subsystem satisfies the
inequality FH�;T�

½�0
�� � FH�;T�

½��� � 0 for any state �0
�

(originating from the positivity of the relative entropy),
which, when added together, yield

�AQA þ �BQB � �SA þ �SB; (1)

where Q� ¼ trð�0
�H�Þ � trð��H�Þ is the heat [6] into

system �. Note that this inequality only demands that an
initial temperature be defined, and no further restrictions on
�0
� are needed at this stage. Under the closed system

constraint of constant total entropy and constant energy,
QA þQB ¼ 0, we can write (1) as

QA

�
1

kTA

� 1

kTB

�
� �I: (2)

This inequality provides directionality for any energy-
conserving process. It relies on local initial properties but
also depends on nonlocal correlations. Any initial correla-
tions, up to the constraint of thermal marginals, are permit-
ted, and the bound is independent of any assumptions on
interaction strength, in contrast to several previous consid-
erations of the thermodynamics of open quantum systems
where weak coupling between the system and the bath is
required [7–9]. We are interested in the evolution of a
closed system which in itself displays thermodynamic be-
havior. In standard thermodynamics, it is assumed that the
interacting systems are initially uncorrelated, rendering the
entropy as additive: � ¼ �A � �B, and thus Ið�Þ ¼ 0. As
the interaction cannot decorrelate A and B any further,
Ið�0Þ � Ið�Þ, and it follows that the left-hand side of
Eq. (2) must be positive. This means that, when TA � TB,
it must be the case that QA � 0, and heat flows in the
standard manner, from hot to cold.

In general, however, systems A and B could initially
possess correlations [10], in which case the interaction
could lower the QMI. If �I < 0, then there is no longer
an absolute restriction on the direction of heat flow, and, for
a suitably chosen interaction, we will deterministically
observe heat being transferred from the colder to the hotter
body. We call this anomalous heat flow (AHF). Even
though the local entropies have decreased and negative
heat flow has occurred, after the local measurement of

the individual energies, the system is left uncorrelated
and thus one cannot cause heat to flow from cold to hot
in a cyclic process, thus saving the second law. In this
sense, correlations are a resource.
To observe a large AHF, the initial state of the system

would have to be very correlated, possibly entangled.
Indeed, the AHF constitutes a discriminating feature be-
tween quantum and classical thermodynamics and may
be used as an operational indicator of entanglement [5]
that does not require knowledge of the joint initial state
of the two systems. This is easily seen, since the QMI
over separable states is bounded from above by
logðminfdA; dBgÞ, while, for the full quantum state space,
the bound is twice this. Therefore, when �I >
logðminfdA; dBgÞ, the initial state � must be nonseparable,
and, in turn, any transfer of heat from the colder to the

hotter body of an amount greater than logðminfdA;dBgÞ
j�A��Bj indicates

the presence of entanglement [5].
Keeping in mind the additional constraint of equal en-

ergies for � and �0 included in this example, the quantity of
AHF possible in a closed system is bounded by the largest
�I that can be obtained reversibly. Once again, the deter-
mination of such a fundamental limitation reduces to our
general problem.
Example 3: Partovi/Peres collision model of equilibra-

tion.—In Ref. [11], Partovi proposed a collision model of
equilibration, later simplified by Peres [12]. Two ingre-
dients are required in the collision process: first, an in-
crease in the local entropies, which is achieved by
interacting two initially uncorrelated quantum systems
via a (strongly) energy-conserving unitary, and second,
irreversibility, causing a growth of the total entropy of
the system. In the model, the latter is enforced by assuming
that the two systems decorrelate after interacting. One full
collision can be written as �¼�A��B!�0 ¼U�Uy!
�0
A��0

B, with Sð�0
AÞ þ Sð�0

BÞ � Sð�AÞ þ Sð�BÞ. This pro-
cess is reiterated, and it can be shown that the systems
reach a stationary state of equal temperature.
The second requirement of complete decorrelation to a

product state is very stringent—given that physical systems
typically dephase (i.e., off-diagonal ‘‘coherences’’ of the
density matrix decay) much more rapidly than they com-
pletely decorrelate. A natural question therefore is whether
the systems can retain some minimal amount of correlation
and still reach equilibrium. Part of the solution to ex-
amples 1 and 2 is finding the state which has the minimum
QMI on a unitary orbit: when the two interacting particles
are qubits, we can use this result to show that, after the
unitary part of the collision, if the qubits dephase to this
minimally correlated state (which is not a product state),
then equilibration is still achieved.
Overview of the general solution.—Given an N ¼

dAdB-dimensional bipartite state � with spectrum
� ¼ f�ig, our goal is to find �min (�max), defined, modulo
local unitary transformations, as the state for which I is
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minimal (maximal) over the unitary orbit [13], O ¼
f�: � ¼ U�Uyg, for all U unitaries. For simplicity, we do
not demand energy conservation for now but revisit it later
when we consider a two-qubit system.

Finding the maximally correlated state is hard classi-
cally [14] but fairly straightforward over the space of
quantum states. We can always find a unitary that trans-
forms a state to

�max ¼
XN0

i¼1

�ij�iih�ij; (3)

where fj�iig is any generalized Bell state basis [15] with
N0 ¼ ðminfdA; dBgÞ2, obtained from the Schmidt decom-
position. Since trAðj�iih�ijÞ / IB for all i, we deduce
that also trAð�maxÞ / IB and in turn Ið�maxÞ ¼
2 logðminfdA; dBgÞ �Hð�Þ. This is the maximum attain-
able value of the QMI over all state space, with a reduction
by the amount Sð�Þ because of the restriction to a unitary
orbit.

Finding the minimally correlated state is considerably
harder: because the total spectrum of the state is fixed,
given an initial state �, there does not always exist a unitary
transformation that can decorrelate its subsystems. Hence,
Ið�minÞ � 0 in general and, unlike �max, the minimum sum
of the local entropies depends on �. The challenge is to
optimize over the set of reduced states compatible with a
composite system having a fixed spectrum �. Finding the
set of allowed such reduced states is the highly nontrivial
‘‘quantum marginal problem’’ [16–18].

The initial difficulty is that the optimization problem is
not convex. There does not even appear to be a simple
argument that the minimally correlated state should be
separable, although intuitively it seems reasonable that
this should be the case.

In fact, we are able to prove something stronger: the
minimum of the quantum mutual information Ið�Þ over the
unitary orbit is attained for a classically correlated state

�min ¼
X
j;k

�jkjejihejj � jfkihfkj; (4)

where �jk, j ¼ 1; . . . ; dA, k ¼ 1; . . . ; dB, is a reindexing of

�i and fjejig and fjfkig are orthonormal basis states for

systems A and B. That is, the minimum of the QMI over the
unitary orbit equals H½Pj�ð�jkÞ� þH½Pk�ð�jkÞ��
Hð�Þ, where H is the Shannon entropy for the marginal
of some permutation (�) of the eigenvalues �jk.

To prove this, we consider the function G½�A;�B� ¼
S½�A� þ S½�B� defined over the convex hull C of the

unitary orbit O of �. The states in C take the form � ¼P
ipiUi�U

y
i , with

P
pi ¼ 1, pi � 0, and �A, �B are the

reduced states of �. We then look for the minima of this
function G. If these happen to occur on the unitary orbit,
where Sð�Þ is constant, then it will also give us the minima
of I over O.

Writing the eigenvalues as components of vectors, � ¼
specð�Þ and � ¼ specð�Þ, it can be shown that the reduced
states of any� (which include the unitary orbit states) have
eigenvalues that are marginals of a probability distribution
obeying the majorization relation � � � [18]. Note that all
� satisfying this relation form a convex set P ð�Þ. G can be
shown to be concave on the set P ð�Þ, and so its minima
occur at the extremal points. These extrema are permuta-
tions of the components of �, whose corresponding states
lie on the unitary orbit, and so the minimum QMI occurs at
a permutation of the f�ig [19].
However, knowing that the state is classical is not the

full solution to the problem. Consider a state with
specð�Þ ¼ ð1=2; 1=2; 0; 0Þ—the two classical states of the
form (4) ðj00ih00j þ j11ih11jÞ=2 and ðj00ih00j þ j01i�
h01jÞ=2 have the correct spectrum, but the former is corre-
lated while the latter is not. So, the QMI depends on the
ordering of the eigenvalues in �min.
There are N! different permutations of �i to consider;

however, it is possible [14] to reduce this number down to
an irreducible set of Young tableaux [20] in which the
minimally correlated state will be found. For the simplest
case of dA ¼ dB ¼ 2, the set has a unique element, which
can be compactly represented as

½�ij� ¼ �1 �2

�3 �4

� �
: (5)

Here, the eigenvalues �i are in nonincreasing order, and
row j, column k corresponds to the reindexed element �jk

of Eq. (4) above. For dA ¼ 2 and dB ¼ 3, the full set of
permutations has ðdAdBÞ! ¼ 720 elements; however, our
analysis [14] reduces this to just 5 tableaux:

�1 �2 �3

�4 �5 �6

" #
;

�1 �2 �4

�3 �5 �6

" #
;

�1 �2 �5

�3 �4 �6

" #
;

�1 �3 �4

�2 �5 �6

" #
;

�1 �3 �5

�2 �4 �6

" #
:

For the case of two qutrits, there are 21 tableaux to con-
sider; for two four-dimensional systems, the irreducible set
has approximately 12 000 elements. Clearly, it would be
desirable to have an efficient algorithmic procedure to
identify the element on the irreducible set on which the
minimum is attained, but it is currently not clear if one
exists.
The primitive case of two qubits.—As an illustrative

example, we consider two qubits in which case the preced-
ing discussion shows that the minimal QMI on a unitary
orbit has a value of

Ið�minÞ ¼ Hð�1 þ �2Þ þHð�1 þ �3Þ �Hð�Þ;
where �1 � �2 � �3 � �4. Therefore, the maximum that
the QMI can change by for a two-qubit system undergoing
a global unitary transformation is
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�Imax
U ¼ 2�Hð�1 þ �2Þ �Hð�1 þ �3Þ: (6)

Considerable insight into this case can be gained by
doing the optimization more explicitly. This is possible
because the quantum marginal problem for a composite
system of two qubits has been solved [18] and the results
are readily applied to our situation. Examining this also
allows us to include the constant energy constraint.

Let us denote the two eigenvalues of the reduced state
�� as �� and 1� ��, where �� � 1

2 and � 2 fA; Bg.
There is a set of inequalities that constrain the spectra of
these marginals, given �, to a set R [21]. Figure 1 depicts
the shape of the set R (shaded regions) that �A and �B

occupy and gives some representative examples of how it
varies according to the rank and degeneracy of �.

Two-qubit correlations with energy conservation.—
Example 2 above sought the maximal change in the QMI
for a bipartite system in a state � undergoing unitary
evolution to a new state �0 and constrained to energy
conservation trð�HÞ¼ trð�0HÞ :¼E, where H¼HAþHB

is the sum of the original local Hamiltonians. The reduced
states of �0 are allowed to be nondiagonal in HA and HB.
This divides the set R of allowed reduced states into two
regions: ones that could have energy E, forming the set
RE � R, and ones that could not.RE defines an ‘‘energy-
conserving region.’’ For simplicity, let us pickHA ¼ HB ¼
j1ih1j, so that the energy spacing of HA equals that of HB.
The region RE is shown in Fig. 1(d). It is shown in
Ref. [14] that the maximal variation of correlations for a

two-qubit state undergoing an energy-conserving unitary
transformation is found to be

�Imax
E ¼ 2H

�
E

2

�
�Hð�1 þ �2Þ �Hð�1 þ �3Þ;

where the maximally and minimally correlated states in
RE are also shown in Fig. 1.
An interesting observation is that the point q in the figure

does not uniquely define a joint state (even up to local
unitaries). It can be the case that a strong energy-
conserving unitary acting on one state at q transforms it
only along the solid portion of the line; however, it evolves
another along the full solid-and-dotted line. This is because
these two states have different types of correlation, even
though they have the same QMI. The details for this will
appear in Ref. [14]. In any case, the set of states reached in
RE is restricted to the line for strong energy-conserving
unitary evolutions. These states have minimal variance for
energy measurements. Weak energy-conserving unitaries
can transform the initial state to all other points in RE,
which involve intrinsically quantum fluctuations via
superpositions.
Conclusions.—In this Letter, we have analyzed the ab-

stract problem of how correlations vary along unitary
orbits for isolated quantum systems, an intricate mathe-
matical task that reveals a complex relationship between
the mutual information and the ordering of a bipartite
probability distribution. The results of this find application
in different thermodynamic scenarios such as equilibra-
tion, heat exchange, and localization of free energy. Our
work can be extended to understanding the correlation
structure of more complicated processes, such as a quan-
tum channel consisting of k unitaries, each applied with
some probability pk to the bipartite state. It would also be
of interest to explore connections between our work and
the recent papers [22,23] on the resource theory of quan-
tum thermodynamics.
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