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Atom-dimer scattering below the three-body breakup threshold is studied for a system of three identical

bosons. The atom-dimer scattering length and the energy of the most weakly bound three-body state are

shown to be strongly correlated. An appropriate rescaling of the observables reveals the subtlety of the

correlation and serves to identify universal trends in the unitary limit of divergent two-body scattering

length. The correlation provides a new quantitative measure of the degree of universality in three-body

systems with short-ranged interactions, as well as a consistency check of effective field theories and other

theoretical models.
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Among the most striking results of recent experimenta-
tion with supercooled atomic gases is the demonstration
that trap loss rates are extraordinarily sensitive to few-body
interactions within a trapped many-body system. The ex-
periments of many groups [1] show signatures of few-body
correlations within a trapped ensemble of Bose alkali
vapors at nano-Kelvin temperatures. This discovery has
stimulated a large number of theoretical and experimental
investigations, particularly in the unitarity limit of a diver-
gent two-body scattering length, where the system has no
natural length scale beyond that of the trapping potential.

It is widely anticipated that, in the vicinity of unitarity,
supercooled Bose gases display universal collective prop-
erties. However, criteria for the onset of universality and
measures of the degree of universality have not yet
emerged. The primary purpose of this Letter is to provide
such a measure through a thorough investigation of atom-
dimer scattering for a wide variety of two-body short-
ranged potentials and the zero-range interaction model [2].

Weakly bound few-body systems with relatively large
two-body scattering lengths have long been studied in
nuclear physics. A salient example is a result published
by Phillips in 1968 [3] which puzzled nuclear theorists for
more than a decade. Phillips compared the results of cal-
culations of the neutron-deuteron scattering length and the
energy of the triton bound state made with different two-
body potentials. He found that, unlike two-body scattering
in which the energy of the last bound state scales as the
inverse squared scattering length (E��1=a2), the bound-
state energy of the triton (n-n-p) appears approximately
proportional to the scattering length of the neutron-
deuteron collision. The data illustrating this correlation
are shown in Fig. 1.

Many subsequent works [4] confirmed that a strong
linear correlation between these two observables exists.
Two decades later, a simple and elegant explanation of
the Phillips line was given by Efimov and Tkachenko [5],
who simply noted that the apparent linearity derives from
the fact that the two-body potentials used sample only a

small portion of the space of scattering parameters; that is,
they yield similar values for the neutron-deuteron scatter-
ing lengths.
While the origin of Phillips’s observation is now well

understood, modern experiments with ultracold gases are
able to sample a much wider range of scattering parameters
by magnetic field tuning through a Fano-Feshbach reso-
nance. This suggests that the correlation between two- and
three-body parameters can be investigated in far greater
detail than in earlier nuclear physics studies. Theoretical
and experimental works related to universality in ultracold
Bose gases have concentrated on three-body recombina-
tion in the close vicinity of the three-body threshold. In this
Letter, we discuss the properties of the three-body system
at the two-body threshold and below.
In this Letter, we introduce a new parametrization of the

relationship between the three-body (atom-dimer) scatter-
ing length and the energy of the last three-body bound state
for the specific case of three identical Bosons. This rela-
tionship is referred to below as the modified Phillips line.
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FIG. 1. The Phillips line, showing the unexpected linear cor-
relation between the triton bound-state energy and the neutron-
deuteron scattering length (data from Ref. [5]).
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In contrast to the original Phillips line, this relationship is
found to be linear over a large range of interaction parame-
ters and more directly reflects the well known threshold

law for single-channel scattering, namely, E � @
2

ma2
. It also

provides a simple test of universality in three-body
systems.

As pointed out by Efimov and Tkachenko [5], for a
weakly bound three-body state, the approximate correla-
tion E2 � E3 � @

2=ð2m12a
2
3Þ should hold, whereE2 andE3

are the energies of the dimer and trimer bound states
(relative to the three-body breakup threshold), m12 is the
reduced mass of the particle-dimer system, and a3 is the
particle-dimer scattering length. A more transparent rep-
resentation of the strength of the correlation is obtained by
rewriting this equation in terms of the scaled dimensionless
variables

� � a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2m12E2

p

=@; ! � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E3=E2 � 1
q

: (1)

The variable � can be thought of as a dimensionless
scattering length, and ! characterizes the three-body bind-
ing energy. If the three-body state nearest to the threshold
is deeply bound, ! is small; large values of ! indicate the
existence of a weakly bound three-body state.

Using a recently developed three-body code, we have
strenuously tested the well studied case of three bosonic
4He atoms [6], and so we will use the helium trimer as a
first illustration of our improved parametrization. The tra-
ditional Phillips line for helium trimer states calculated
with four commonly used two-body potentials is plotted in
Fig. 2(a). Figure 2(b) shows the modified Phillips line
obtained using the suggested scaling with the dimer bind-
ing energy. Note that the scaling results in an improved fit.

The equation E2 � E3 � @
2=ð2m12a

2
3Þ derives from the

fact that atom-dimer scattering is dominated by the pole of
the tmatrix corresponding to the near-threshold state of the
trimer. Generally speaking, we should expect the linear
relation of the rescaled parameters � and ! to hold,
provided that no other poles of the t matrix are relevant
in the energy range of interest. We have tested this asser-
tion for systems with three indistinguishable bosons by
studying the correlation for a variety of two-body poten-
tials with widely adjusted two-body scattering lengths and
binding energies.
Figure 3 illustrates the correlation for six different fam-

ilies of two-body potentials. The potentials include the
TTY potential [7] with an artificial coupling constant, the
family of Bargmann potentials [8] with fixed small effec-
tive range and a scattering length varying from 2 to 250
atomic units, the Bargmann potential with an effective
range simulating the He-He interaction, the family of
Bargmann potentials with varying asymptotic normalizing
constant, and the MTV potential [9] (’’symmetric model’’
for the triton) with a varying coupling constant. The near-
linearity over a wide range of ! is apparent in the figure,
although deviations can be seen, especially for small val-
ues of the three-body scattering length, magnified in the
inset of Fig. 3, where the complexity of the correlation is
revealed. An interesting aspect of the plot, which we had
not anticipated, is the emergence of a universal behavior as
the three-body scattering length approaches zero.
To better understand the complex correlation revealed in

Fig. 3, we show in Fig. 4 the same correlation plot using a
single two-body potential (the Bargmann potential with the
effective range r0 ¼ 1 a:u:) but with large variations of the
two-body scattering length. We have also shown the three-
body data generated by solving the regularized
Skornyakov–Ter-Martirosyan equations [2,10] (which are
equivalent to Faddeev equations for a zero-range interac-
tion model).
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FIG. 2. (a) Phillips line for three 4He atoms: the He3 binding
energy as a function of the He-He2 scattering length based on
four commonly used two-body potentials: TTY [7], LM2M2
[16], HFD-B [17], and HFDBFCI1 [18]. Note the approximately
linear relationship (dashed line). (b) Modified Phillips line for
three 4He atoms for the same set of potentials. Note an improved
linearity.
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FIG. 3 (color online). A modified Phillips line plotted with
rescaled parameters for a wide variety of two-body parameters
and several alternative two-body potentials. Red crosses mark
the results for realistic He-He potentials (see Fig. 2).
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We can identify two distinctive regimes: a universal
regime and a strong coupling regime. In the strong cou-
pling regime (characterized by relatively small two-body
scattering length), the shape of the modified Phillips line
depends on the potential (inset of Fig. 3) and, typically,
forms an elongated half-loop above the universal curve.
First, as the two-body scattering length increases, the
points on the Phillips line move right along the correlation
plot, reaching a local maximum, and then turn left as they
approach the universal regime.

In the universal regime, as the two-body scattering
length increases, the points along the Phillips line move
left along the universal curve. The shape of the universal
correlation plot stems from the interplay of poles of the
three-body tmatrix corresponding to the formation of near-
threshold bound and virtual states.

We can distinguish three characteristic parts of the uni-
versal curve. The linear part at the right end corresponds to
a large positive particle-dimer scattering length and a very
shallow three-body bound state. The diverging part at the
left end of the correlation plot corresponds to a large
negative particle-dimer scattering length and indicates
the formation of a near-threshold virtual state. With in-
creasing two-body scattering length, this virtual state turns
into a bound state, and the corresponding point on the
modified Phillips line jumps to the far end of the positive
linear part of the universal curve. There is also a transi-
tional nonlinear regime, when the scaled particle-dimer
scattering length � is small, and both poles contribute to
the shape of the universal curve.

In order to understand the shape of the universal curve
better, we use the Faddeev formalism, which treats the
interactions within two-body subsystems explicitly [11].
Let us start from a simple analysis of the spectrum of the
Faddeev operator for identical bosons

K̂ðEÞ ¼ Ĝ2ðEÞVðP̂þ þ P̂�Þ;
where Ĝ2ðEÞ ¼ ðĤ0 þ V � EÞ�1 is the Green’s function

for the three-body channel Hamiltonian, Ĥ0 is the
Hamiltonian for three free particles, V is the two-body

pairwise potential, and P̂� are Jacobi coordinate trans-
formation operators. The equation for the component of
the scattering wave function then reads

½1þ K̂ðEþ i0Þ�� ¼ �KðEþ i0Þ�0;

where �0 stands for the atom-dimer plane wave and �
behaves asymptotically as a three-dimensional spherical
wave [12]. [The three-body wave function can be
recovered from the component as � ¼ ð1þ Pþ þ P�Þ�
ð�þ �0Þ.] The component of the bound-state wave func-
tion satisfies the homogeneous equation

½1þ K̂ðEÞ�� ¼ 0:

The Faddeev operator K̂ðEÞ for short-range potentials has a
discrete spectrum with eigenvalues �nðEÞ. For E � E2, the
eigenvalues �nðEÞ are real.
At the two-body threshold E ¼ E2, the Faddeev operator

can be approximated by a sum of projectors on the states
corresponding to eigenvalues �þ and �� closest to�1. The
particle-dimer scattering length can then be expressed as

a3 ¼ aþ

1þ �þðE2Þ þ
a�

1þ ��ðE2Þ ; (2)

where aþ and a� are some real positive coefficients corre-
sponding to the residues of the scattering length at the poles
��ðEÞ ¼ �1. These residues depend on the energy parame-
ter very smoothly and can be approximated by constants aþ
and a�. There are two possible situations: (1) one of the
eigenvalues—�þðE2Þ or ��ðE2Þ—is very close to the criti-
cal value � ¼ �1, and the corresponding term gives the
major contribution to the particle-dimer scattering length;
or (2) both of the terms contribute substantially. The first
case is responsible for the ‘‘linear’’ and ‘‘singular’’ parts of
the �ð!Þ universal correlation plot. The second case corre-
sponds to the intermediate regime of small-scaled particle-
dimer scattering length �.
This interpretation is illustrated in Fig. 5, where we show

the particle-dimer scattering length (top) and the three-
body operator spectrum (bottom) as a function of the
two-body scattering length. The poles in the three-body
scattering length correspond to the eigenvalue of the three-
body operator crossing the critical value �ðE2Þ ¼ �1,
where a new three-body bound state is formed.
A close fit to the universal part of the modified Phillips

line is reproduced by the simple empirical formula

� ¼ �1
1
! � 1

!0

þ!þ �0; (3)

with �1 ¼ 5:5, !0 ¼ 0:419, and �0 ¼ 4. The first term
here is responsible for the description of the large negative
scattering length regime; the other two terms fit the large
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FIG. 4 (color online). The modified Phillips line for the
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of the two-body scattering length a2 are shown along the curve.
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positive scattering length regime. Equation (3) can be used
in practical calculations to estimate the trimer binding
energy from the scattering length. A simpler empirical fit
� ¼ !þ 3

2 ð1� 1=!2Þ is suitable for a positive three-body
scattering length.

Careful analysis of the modified Phillips line reveals
that, in the universal, potential-independent regime, the
scattering length for the atom-dimer collision approaches
zero when E3=E2 � 2:54. The other special point on the
plot corresponds to a divergent negative scattering length,
which corresponds to the universal ratio E3=E2 � 6:7.

The result demonstrates a novel form of universality in
weakly bound systems. Simple in physical nature, the
modified Phillips line provides an important test for nu-
merical and theoretical analysis of three-body systems. It
affords the opportunity to check bound-state and scattering
results for consistency and classifies three-body systems
according to distinct dynamical regimes. It also provides
an opportunity to check estimates of three-body bound
states and atom-dimer scattering lengths for internal con-
sistency, such as those obtained with regularized zero-
range potential models [13]. Correlation plots similar to
the modified Phillips line for bosons can be constructed for
three-body systems with nontrivial spin-isospin structure
and nonidentical particles. Here, we shall only mention
that the data shown in Fig. 1 are consistent with the
universal part of the modified Phillips line constructed on
the base of the zero-range interaction model [10].

The calculations presented here have been performed
using an original code for solving Faddeev equations
[14,15]. The numerically effective computational kernel
quickly solves the system of Faddeev equations for bound
or scattering states (from a few seconds to a few minutes,
depending on the desired numerical accuracy and physical
parameters of the system). The code is available from the

authors by request and will be available online in the near
future.
The authors thank Dr. Kolganova for stimulating dis-

cussions and independent testing of our three-body code.
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FIG. 5. Atom-dimer scattering length and the spectrum of the
kernel of the (a) Faddeev or (b) Skornyakov–Ter-Martirosyan
equation at the two-body threshold as a function of the two-body
scattering length. (a) Bargmann potential with r0 ¼ 1 a:u:;
(b) zero-range interaction model.
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