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Random packings of granular chains are presented as a model system to investigate the contribution of
entanglements to strain stiffening. The chain packings are sheared in uniaxial compression experiments.
For short chain lengths, these packings yield when the shear stress exceeds the scale of the confining
pressure, similar to granular packings of unconnected particles. In contrast, packings of chains which are
long enough to form loops exhibit strain stiffening, in which the effective stiffness of the material
increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-
of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray
tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of

entangled chains.
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Most materials become weaker the further they are
strained. In packings of granular materials, in particular,
the maximum sustainable stress is limited by interparticle
attraction forces or an external confining pressure which
hold the structure together along force chains that span the
system. Here we report experiments on packings of granu-
lar chains consisting of beads connected by flexible links
and show that they exhibit the radically different behavior
of strain stiffening, whereby the effective stiffness in-
creases as the material is further strained, and that they
can sustain stresses that far exceed the contributions from
attractions and external confinement.

Strain stiffening is known to occur in many polymeric
materials [1]. Theories suggest strain stiffening could de-
pend on many factors including chain stiffness, density,
temperature, strain rate, and, in particular, on structures
such as entanglements between different chains [2-5].
However, it has not been possible to directly measure
entanglements in polymer experiments because these
structures are very small. In this Letter, we investigate
the role of entanglements in granular strain stiffening.
Macroscopic chains have several advantages over molecu-
lar polymer systems for investigating entanglements. First,
the macroscopic size allows for imaging the structure to
measure the precise positions of each particle and link.
Second, we can isolate entanglement effects from tempera-
ture and strain rate dependent effects because the macro-
scopic chains have no inherent time scales due to Brownian
motion or relaxation.

Previous work on granular chains focused on their pack-
ing structure near the jamming transition, but did not
address their response to stress [6—8]. We go beyond those
works by first demonstrating that packings of granular
chains of sufficient length exhibit strain stiffening and
can sustain stresses orders-of-magnitude greater than
those of unlinked granular materials. We then use x-ray
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tomography to measure the precise packing structure and
identify entanglements to demonstrate quantitative con-
nections between entanglements and strain stiffening.

As a model material, we used macroscopic granular
chains consisting of hollow spherical brass beads shown
in Fig. 1(a). The beads are flexibly connected into chains
by enclosing dog-bone-shaped brass links. These connec-
tions have essentially zero stiffness for small bend angles,
but they have a maximum bend angle beyond which plastic
deformation occurs. This defines a minimum loop circum-
ference ¢ the chains can bend into, as shown in Fig. 1(a).
We used two sets of chains with beads of slightly different
diameters of 1.9 and 2.1 mm which causes them to have
different minimum loop circumferences of & =8 and
& = 11 beads, respectively [9].

We measured the stress response of granular chain pack-
ings under uniaxial compression [10]. The grains were
poured into a flexible elastic membrane in a cylindrical
shape with solid end caps on the top and bottom, as shown

FIG. 1 (color online). (a) An individual chain with length
N = 20 beads. The minimum loop size of ¢ = 8 beads is high-
lighted by the red circle. (b) Cylindrical packing of chains with
N > ¢ =8 inside a thin latex membrane used for uniaxial
compression measurements. Many tight loops near the minimum
loop size can be seen in the packing through the membrane.
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in Fig. 1(b). The chains can be seen to form tight loops
within the packing, as small as the minimum loop circum-
ference [7]. The membrane allows for free radial expansion
with just enough confining stress to hold up the sample. An
Instron materials tester was used to quasistatically push the
top end cap downward while measuring its height and the
required force for samples with diameter and initial height
of 50 mm. This average compressive stress 7 is calculated
as the force over the cross-sectional area of an end cap and
the compressive strain 7 is calculated as the height change
(positive downward) over the initial height.

We show in Fig. 2 the stress-strain relation 7(y) for a
packing of chains with length N = 10* beads, much longer
than their minimum loop circumference £ = 8. Enormous
strain stiffening can be seen as the region of positive curva-
ture of 7(7y). A striking feature is that the stress reaches the
order of 10 MPa before the packing fails, which is indicated
by the flattening of the stress-strain relation where the
packing is able to shear without supporting additional
stress. This ultimate strength is on the order of 1/10 the
strength per density of the solid brass that makes up the
chains (this packing is about 20% brass by volume) and
comparable to polymer rubbers. In contrast, unconnected
granular materials typically fail when the shear stress ex-
ceeds the confining pressure at the boundary in the absence
of interparticle attractions [10]. This is shown for N = 1
(unlinked beads) in the inset of Fig. 2, where the total
confining stress coming from gravity and the elastic mem-
brane is only about 10 kPa, which is the maximum stress
scale reached (the positive slope for y = 0.05 matches the
contribution of the membrane stiffness as it is deformed).
The chain packings exceed this confining stress by a factor
of ~10°. The strength of polymer materials is partly attrib-
uted to the extensional or bending strength of individual
chains. Indeed, during the compression of the long chains in
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FIG. 2. Stress 7 vs strain y for packings of chains with length
N = 10*. The shaded bands represent 1 standard deviation based
on 5 repeated measurements. Strong strain stiffening is seen as
the positive curvature in 7(y). Inset: 7(y) for N = 1 (unlinked
beads). Open symbols: reproduction of N =~ 10* data for com-
parison on the smaller scale.

Fig. 2 we started to hear chains break at the point where the
maximum stress was reached, and after each measurement
was done we counted approximately 10% of the links in the
chains to be broken. This breaking and the ability to support
stresses much greater than the confining stress suggests
that—similar to polymer systems—the material strength
of the chains themselves contributes and the packing can
only shear and fail by breaking links in the chains, which
would require the packing structure to produce some self-
confinement.

To investigate the transition from granular behavior in
the limit of unlinked beads with N = 1 and strain stiffening
in the limit of large N, we show stress-strain curves for
packings of chains with different lengths N in Fig. 3.
Chains of minimum loop circumferences ¢ = 8 and
¢ =11 are shown in panels a and b, respectively. It is
seen in both panels that the data fall into two distinct bands:
the upper band of data with chain lengths N > ¢ exhibits
strong strain stiffening, while the lower band of data with
N = ¢ exhibits typical granular strain softening or much
weaker strain stiffening. The fact that the transition length
between these two bands scales with and is about equal to
the minimum loop size £ in both cases suggests a relation-
ship between strain stiffening and whether the chains form
loops in the packings.
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FIG. 3 (color). Stress 7 vs strain vy for different chain lengths
N shown in the key. (a) For chains of minimum loop circum-
ference & = 8. (b) For ¢ = 11. In both panels, the data for
N > £ (cool colors) group into a band which exhibits strong
strain stiffening.

108302-2



PRL 108, 108302 (2012)

PHYSICAL REVIEW LETTERS

week ending
9 MARCH 2012

To investigate the role of entanglement in this relation-
ship, we performed x-ray tomography at the Advanced
Photon Source, obtaining the precise positions of each
bead and link in three dimensions [11]. For these experi-
ments, we used aluminum chains with bead diameter
2.5 mm and ¢ = 7.5 in cylindrical packings with diameter
and height of 35 mm each. Here we present results for
chain lengths N =5, 10, and 20, each compressed to a
strain of y = 0.2.

We define an entanglement to occur if one chain wraps
partially around another. Motivated by string knotting
analysis [12], we first form a closure by drawing an imagi-
nary line between any two beads of the entangling chain
separated by a contour length m beads along the contour of
the chain. We then define an entanglement manifold as the
minimal two-dimensional manifold bounded by this clo-
sure. If another chain crosses through this manifold, it is
counted as entangled by the entangling chain. Examples of
entanglements along with the manifolds are shown in
Fig. 4(a). These particular examples would not be counted
as entanglements based on typical polymer algorithms
where entanglements are counted if chains catch on each
other if they are contracted [13]. In contrast with elastic
polymers, our granular chains are highly constrained from
significant rearrangements due to their high packing den-
sity, so we expect these examples are still able to produce
significant constraints against shearing from entanglement.
Regardless, the majority of our entanglements would sat-
isfy the typical requirements, and it is usually expected that
different algorithms for measuring entanglement tend to
produce qualitatively similar statistics [13].

We count all of the entanglements for each possible
closure between beads and plot the average number of
entanglements per closure as a function of the contour
length m in Fig. 4(b) [14]. Regardless of chain length N,
for contour lengths m = 3, no entanglements are observed
because the size of the beads restricts other chains from
fitting inside even the largest possible entanglement mani-
folds. For larger m, the average number of entanglements
per closure increases monotonically with m. Since chains
that are longer compared to their minimum loop size can be
bent further, the area of the entanglement manifold tends to
similarly increase with m and it is more likely in a random
packing that other chains will cross this manifold to be-
come entangled. Thus, the entanglement manifold method
provides an intuitive way to understand why the probability
of entanglements increases with separation or chain length.

The increase in the number of entanglements per closure
with contour length seen in Fig. 4(b) could help explain
why only the longer chains strain stiffen. The longer chains
with N = 10 and 20 which strain stiffen reach more than 1
entanglement per closure for larger contour lengths, while
the shorter chains with N = 5 which do not strain stiffen
have no more than 0.04 entanglements per closure. Since
the probability of entanglements as a function of contour
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FIG. 4 (color online). (a) Examples of entanglements for chain
lengths N =5 (left) and N = 20 (right). The green chains are
entangling the purple chains. The shaded region indicates the
entanglement manifold for the closure connecting the ends of the
chains (m = N — 1). (b) Average number of entanglements per
closure as a function of contour length m for ¢ = 8. The key
indicates the chain lengths N. (c) Size of the largest entangled
cluster as a fraction of the total number of chains in the sample.
The dotted line indicates the onset of strong strain stiffening,
which is only found to occur when the contour length of a
closure is large enough so that there are entangled clusters
consisting of the majority of chains in the system. The inset
image shows an example of a cluster of 4 chains with 5
entanglements between them for N = 10.

length is similar for different N, the reason that the N = 5
chains do not entangle more is simply that they are too
short compared to the minimum loop size & = 8 for them
to bend enough to have large entanglement manifolds.

If entanglements are to sustain a stress, they must con-
nect to form clusters that span the system [15]. If these are
to prevent failure by shear so that the packing as a whole
can sustain significantly more stress, these clusters must
span the system densely so that they provide enough con-
straints to avoid weak points in the packing that could
shear. We identify a cluster as subset of chains in entangle-
ments that are transitively connected. An example of a
cluster of four entangled chains is shown in the inset of
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TABLE I. Comparison of different length scales for the two
chain types. The chain length required for strong strain stiffening
is just above that required for most of the chains to be entangled
in a single cluster, and consistent with the minimum loop
circumference of the chains.

Type 1 Type 2
Minimum loop circumference & 8.0x05 11.0x0.3
Minimum length for strong strain stiffening 8.0 0.5 11.0 =0.5
Minimum length for majority clusters 6.5+ 1.0

Fig. 4(c). The largest cluster size found for each N and m is
plotted in Fig. 4(c). For the strain-stiffening chains with
N = 10 and 20, the largest cluster size jumps sharply to
over 50% of the chains in the packing at m = 6 and 7,
respectively. This is just below the chain length N = 8§
required for strong strain stiffening (these length scales
are summarized in Table I). These cluster sizes are also
large enough that they can span the system in many direc-
tions. In contrast, the N = 5 chains which do not strain
stiffen also do not have large enough clusters of entangle-
ments to span the system.

To summarize, we demonstrated that random packings
of granular chains can be used as a model system that
exhibits strain stiffening as in polymer materials, with the
additional ability to precisely measure the structure of
entanglements. These chains exhibit strain stiffening if
they are longer than the minimum loop circumference
they make in packings, which allows them to form
system-spanning clusters of entanglements. Since the
strength of granular materials is usually limited by the
scale of the confining pressure at the boundaries, we pro-
pose that for the chain packings to reach the orders-of-
magnitude higher strength, the confinement at the bound-
ary must be functionally replaced by a self-confinement
due to the system-spanning clusters of entanglements.
Strain-stiffening then results if these entanglements tighten
up under strain, eventually locking up to prevent further
shear unless the links break. This picture contrasts with
recent theoretical arguments that strain stiffening in poly-
mers can be explained without entanglement. However,
those arguments only explained much weaker strain stiff-
ening in which the stress increase is less than an order of
magnitude [4,5], so no additional confining stress mecha-
nism was necessary in those cases. The questions of
whether entanglement is the only way to get strong strain
stiffening, and how to quantitatively predict strain stiffen-
ing from entangled structures, remain open for future work.
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