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Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac

tissue that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-

beat dynamics, we explore this pattern’s dynamics in the regime of a calcium-dominated period-doubling

instability at the single-cell level. We find a novel nonlinear bifurcation associated with the formation of a

discontinuous jump in the amplitude of calcium alternans at nodes separating discordant regions. We show

that this jump unidirectionally pins nodes by preventing their motion away from the pacing site following

a pacing rate decrease but permitting motion towards this site following a rate increase. This unidirec-

tional pinning leads to strongly history-dependent node motion that is strongly arrhythmogenic.

DOI: 10.1103/PhysRevLett.108.108103 PACS numbers: 87.19.Hh, 05.45.�a, 89.75.�k

The study of period-two dynamics in cardiac tissue
has become an important topic of research in the physics
[1] and biomedical communities [2]. The term alternans
describes beat-to-beat alternations of both action potential
duration (APD) and peak intracellular calcium concentra-

tion (Ca
peak
i ). Heart cells generically exhibit alternans when

they are paced rapidly or in pathological conditions.
Interest in alternans during the past decade has stemmed
from the discovery that APD alternations can become
‘‘spatially discordant’’ in tissue [3], meaning that APD
alternates with opposite phases in different regions [4,5].
Spatially discordant alternans (SDA) dynamically creates
spatiotemporal dispersion of the refractory period during
which cells are not excitable, thereby promoting wave
blocks and the onset of lethal cardiac arrhythmias [2].

To date, our theoretical understanding of SDA is well
developed for the case where APD alternans results from
an instability of membrane voltage (Vm) dynamics at the
single-cell level, which originates from the restitution re-
lation between APD and the preceding diastolic interval
(DI) between two action potentials. Numerical simulations
[6] have shown that ‘‘nodes,’’ which are line defects with
period-one dynamics separating discordant regions of
period-two oscillations of opposite phases, can form spon-
taneously in paced homogeneous tissue due to conduction
velocity (CV) restitution, the relationship between action
potential propagation speed cv and DI. In addition, node
formation has been understood theoretically in an ampli-
tude equation framework [7,8] to result from a pattern
forming linear instability that amplifies spatially periodic
stationary or traveling modulations of alternans amplitude.

Despite this progress, our theoretical understanding of
SDA remains incomplete. Both experiments [9] and ionic

model simulations [10] have shown that Capeaki can alter-
nate even when Vm is forced to be periodic with a clamped
action potential waveform, demonstrating that alternans

can also result from an instability of intracellular calcium
dynamics. Although alternans are presently believed to be
predominantly Cai-driven in many instances, our under-
standing of nodes in this important case remains limited.
Numerical simulations have shown a qualitatively similar
role of CV restitution in SDA formation for Vm- and
Cai-driven alternans [4,11], but more complex behaviors
for the latter case depending on the strength of Cai-driven
instability [12] and the nature of Cai-Vm coupling [11,13].
However, a theoretical framework to interpret both com-
putational and experimental observations has remained
lacking.
In this Letter, we extend the theoretical framework of

[7] to uncover novel aspects of SDA formation for
Cai-dominated instability and validate our theoretical pre-
dictions with detailed ionic model simulations. A major
finding is that node motion can be pinned in one direction
owing to the formation of a discontinuous jump in calcium
alternans amplitude at a node where only Vm exhibits
period-one dynamics. This jump leads to strongly
history-dependent SDA evolution and also alters funda-
mentally the spacing between nodes. We summarize here
our main results, and additional details of both theory and
simulations will be described elsewhere.
We start our analysis from the system of spatially

coupled maps of the general form

Cnþ1ðxÞ ¼ fc½CnðxÞ; DnðxÞ�; (1)

Anþ1ðxÞ ¼
Z L

0
Gðx; x0Þfa½Cnþ1ðx0Þ; Dnðx0Þ�dx0; (2)

where AnðxÞ, DnðxÞ, and CnðxÞ denote the APD, DI, and

Ca
peak
i , respectively, at beat n and position x, and

Gðx; x0Þ captures the cumulative effect of electrotonic
(Vm-diffusive) coupling during one beat. For a cable of
length L paced at x ¼ 0 with no flux boundary conditions
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on Vm at both ends, Gðx; x0Þ ¼ Gðx� x0Þ þGðxþ x0Þ þ
Gð2L� x� x0Þ, with GðxÞ ¼ H�ðxÞ½1þ wx

�2 ð1� x2

�2
Þ�,

where H� is Gaussian with standard deviation � (see

Appendix B of Ref. [7]), � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DVAPD

�p
and w ¼

2DV=cv
� are two intrinsic length scales expressed in terms

of the APD and CVat the alternans bifurcation (APD* and
cv�, respectively), and DV is the diffusion constant of Vm

in the standard cable equation _Vm ¼ DV@
2
xVm � Iion.

Furthermore, CV restitution causes the activation interval
TnðxÞ � AnðxÞ þDnðxÞ to vary from beat to beat along the
cable as [7,14]

TnðxÞ ¼ �þ
Z x

0

dx0

cv½Dnðx0Þ� �
Z x

0

dx0

cv½Dn�1ðx0Þ� ; (3)

where � is the imposed period at the paced end (x ¼ 0). To
complete the model, we need to specify the forms of fa and
fc. Since we are interested in understanding the generic
behavior of alternans, we choose simple phenomenological
forms of those maps defined implicitly by

fc=C
� ¼ 1� rcn þ c3n þ �dn; (4)

fa=A
� ¼ 1þ �dn þ �cnþ1; (5)

where cn � ðCn � C�Þ=C�, dn ¼ ðDn �D�Þ=A�, and we
also define an ¼ ðAn � A�Þ=A�. With this choice Cn ¼ C�,
An ¼ A�, and Dn ¼ D� are trivial fixed points correspond-
ing to cn ¼ an ¼ dn ¼ 0. Moreover, cn, an, and dn mea-

sure the departure of Capeaki , APD, and DI, respectively,
from those fixed point values during alternans. The cubic
polynomial in cn in Eq. (4) models a period-doubling
bifurcation of the intracellular calcium dynamics with the

amplitude of Capeaki alternans increasing with the degree of
calcium instability r. The term dn in Eq. (5) incorporates
APD restitution. The other cross terms in Eqs. (4) and (5)
model the bidirectional Vm-Cai coupling taken to be posi-
tive in both directions (�> 0 and � > 0), corresponding to

the typical case of locally in-phase APD and Ca
peak
i

alternans.
To complete the derivation of maps describing the dy-

namics of an, dn, and cn, we linearize Eq. (3) about the
fixed point, which yields

an þ dn ¼ �
Z x

0

dx0

�
ðdn � dn�1Þ=2; (6)

where � � cv�2=ð2cv0�Þ. This linearization is formally
valid as long as the amplitude of DI alternans induced
by Cai alternans is small enough that we can locally
neglect the curvature of the CV-restitution curve, or

jðr� 1Þ1=2�A�cv00�=cv0�j � 1. Furthermore, we assume
that the evolution of alternans amplitude is sufficiently
slow that we can make the approximation dn�1 � �dn.
This assumption is valid close to the alternans bifurcation.
Substituting dn�1 ¼ �dn in Eq. (6) and differentiating
both sides, we obtain a differential equation for dnðxÞ

that can be solved exactly. Because the pacing rate is fixed
at x ¼ 0, giving anð0Þ þ dnð0Þ ¼ 0, this yields

dnðxÞ ¼ �anðxÞ þ e�x=�
Z x

0

dx0

�
ex

0=�anðx0Þ: (7)

The dynamics is completely specified by Eq. (7) together
with the maps obtained by inserting Eqs. (4) and (5) into
Eqs. (1) and (2):

cnþ1ðxÞ ¼ �rcnðxÞ þ c3nðxÞ þ �dnðxÞ; (8)

anþ1ðxÞ ¼
Z L

0
Gðx; x0Þ½�dnðx0Þ þ �cnþ1ðx0Þ�dx0: (9)

Note that the pacing rate � no longer appears in the final
equations but is still contained implicitly in the fact that
D�, and hence the CV-restitution slope and �, can depend
on �. Also, since dn�1 ¼ �dn in steady state, Eqs. (7)–(9)
remain valid in steady state even further from the
bifurcation.
In Fig. 1, we present the results of different alternans

behavior obtained from a numerical survey of Eqs. (7)–(9)
where we vary systematically CV restitution, which be-
comes shallower with increasing �, and the strength of
Cai-driven instability that increases with r. In Fig. 1(a), we
summarize the nature of steady-state solutions in this
parameter space. Small r values yield no alternans solu-
tions (c ¼ 0) where both steady-state cðxÞ and aðxÞ are
identically zero. When r is increased, we find a first
bifurcation at a value r1ð�Þ where steady-state solutions
for both cðxÞ and aðxÞ become nonzero and form smooth
waves (c > 0, smooth). If the asymmetry ofG, given by w,
is not too small, these waves are stationary; otherwise, they
move towards the pacing site with a constant velocity, as in
the voltage-dominated case [7]. For all work presented
here, w ¼ 0 was used, yielding traveling waves in the
smooth regime. We found qualitatively similar results for
positive w.
When r is increased further, we find a second bifurcation

at a value r2ð�Þ where calcium alternans profiles become
stationary and discontinuous at the nodes separating out of
phase regions (c > 0, discontinuous) while aðxÞ remains
smooth due to the smoothing effect of voltage diffusion.
Example profiles of steady-state cðxÞ (blue dots) and aðxÞ
(dashed red line) are shown in Figs. 1(b) and 1(c) from the
smooth and discontinuous regions, by using ðr;�Þ ¼
ð0:9; 10Þ and ð1:2; 15Þ, respectively. For all figures pre-

sented in this Letter, we use parameters � ¼ � ¼ ffiffiffiffiffiffiffi
0:4

p
,

� ¼ 0, � ¼ 1, and w ¼ 0. For comparison, in Figs. 1(d)
and 1(e), we show cðnÞ and aðnÞ profiles inferred from
numerical simulation of the detailed ionic model in
Ref. [15], where n indexes individual cells, by using pa-
rameter values that give smooth traveling profiles and
discontinuous stationary profiles, respectively. Traveling
profiles have arrows indicating movement.
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The onset of alternans at r1ð�Þ is mediated by an
absolute instability analogous to that studied in Ref. [7]
for the voltage-driven case. For � ¼ 0 a linear stability

analysis yields thresholds of r1ð�Þ ¼ 1� �þ 3��2=3=

ð4�2=3Þ and 1� �þ �2ðw�Þ�1 for the instability of
the traveling and stationary modes, respectively, where
� ¼ ��. Furthermore, the wavelength at onset is

4��2=3�1=3=
ffiffiffi
3

p
and 2�ðw�Þ1=2 in the traveling and sta-

tionary cases, respectively, which agrees with the voltage-
driven case in Ref. [7]. Similar expressions can be obtained
for � � 0. Numerical simulations (not shown) are in good
agreement with these theoretical results.

We now concentrate on the discontinuous regime that is
the primary focus of this Letter. To characterize calcium
alternans profiles in this regime [cf. Fig. 1(c)], we examine
first stationary steady-state period-two profiles and substi-
tute cðxÞ ¼ cnðxÞ ¼ �cnþ1ðxÞ into Eq. (8). After differ-
entiating Eq. (8) with respect to x and some manipulations,
we obtain

�c0ðxÞ ¼ c3ðxÞ � ðr� 1ÞcðxÞ � ��a0ðxÞ
ðr� 1Þ � 3c2ðxÞ : (10)

Thus, when alternans grow from c� 0 with r > r2ð�Þ, if
cðxÞ ¼ c� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p

, the derivative diverges and
cðxÞ becomes discontinuous. Through the discontinuity,
the quantity �dðxÞ in Eq. (8) remains smooth, so finding
the other root of the cubic ðr� 1Þc ¼ c3 þ �d gives
the value of cðxÞ at the latter end of the discontinuity.

This gives cðxÞ ¼ cþ ¼ 	2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p

and a total jump

of amplitude jcþ � c�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðr� 1Þp

. To measure the

asymmetry at a node, we introduce the quantity � �
jjcþj � jc�jj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p
. We will refer to a discontinuity

where cðxÞ jumps from c� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p
to cþ ¼

	2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p

as a normal jump. A remarkable property
of this jump is that the limiting values cþ and c� on either
side of the node depend only on the strength r of
Cai-driven instability and are independent of all the other
parameters�, �, �, �, and w. Experimentally, r ¼ 1 is the
point in parameter space where an isolated myocyte paced
with a periodic AP-clamp waveform, or a tissue paced at
one point with negligible CV restitution (� ¼ 1), bifur-
cates to alternans. Hence, the ratio cþ=c� can be used to
deduce r in tissue experiments or simulations under a finite
effect of CV restitution and, hence, to relate single-cell and
tissue behavior.
When starting from the unstable base solution without

alternans (a ¼ c ¼ 0) in the regime r > r2ð�Þ, SDA forms
dynamically as a periodic pattern of discontinuous nodes
with normal jumps. A unique feature of SDA evolution in
this regime, which is entirely absent for Vm-dominated
instability, is that both the node positions and alternans
profiles can depend strongly on the history of how the
parameters r and � are varied. If � or r are increased
starting from a profile with normal jumps, the position of
the nodes remains constant, but the shape of the profile
deforms in such a way that the jump in Cai-alternans
profile becomes symmetrical about the node; i.e., both

jc�j and jcþj approach the same limiting value jc�j ¼ffiffiffiffiffiffiffiffiffiffiffiffi
r� 1

p
where � vanishes. This shows that, if initial con-

ditions contain discontinuous nodes, jumps need not be

normal in steady state if cðxÞ ¼ c� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� 1Þ=3p
is not

attained. This is shown in Fig. 2, where we plot jc�j (solid

0.7 0.8 0.9 1 1.1 1.2 1.3
5

10

15

20

r

Λ
r
2
(Λ)r

1
(Λ)

(a)

c > 0
c = 0 (b)

(c)

smooth discontinuous
c > 0

0 5 10 15 20
−1

−0.5

0

0.5

1

x

c(x)

a(x)

(b)

0 5 10 15 20
−1

−0.5

0

0.5

1

x

c(x)

a(x)

(c)

20 40 60 80 100
−1

−0.5

0

0.5

1

cell n

c(n)

a(n)

(d)

20 40 60 80 100
−1

−0.5

0

0.5

1

cell n

c(n)

a(n)

(e)

FIG. 1 (color online). (a) Nature of steady-state solutions in
the r-� plane. From left to right, no alternans (c ¼ 0), smooth
calcium profiles (c > 0, smooth), and discontinuous calcium
profiles (c > 0, discontinuous). (b) Smooth traveling and
(c) discontinuous stationary cðxÞ (blue line) and aðxÞ (dashed
red line) profiles from simulating Eqs. (7)–(9), by using ðr;�Þ ¼
ð0:9; 10Þ and ð1:2; 15Þ, respectively. Alternans profiles obtained
from a detailed ionic model [15] analogously showing
(d) smooth traveling and (e) discontinuous stationary solutions.
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FIG. 2 (color online). Using r ¼ 1:2, jc�j (solid blue line) and
jcþj (dashed red line) versus � from an initial profile with
� ¼ 10. Inset: �.
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blue line) and jcþj (dashed red line) by using r ¼ 1:2 as we
increase � from 10. As � is increased, jc�j and jcþj tend
toward one another. We superimpose theoretical values of
jc�j for the normal jump and ��1 ¼ 0 cases as a dot-
dashed black line for comparison, noting that jc�j and jcþj
vary smoothly between these values for intermediate val-
ues of �. In the inset, we plot � versus �, noting that
� ! 0 as � ! 1. If � is then decreased back until it
reaches its original value (not shown), the profile recovers
its original shape. However, if� or r are decreased starting
at a point where the jumps are normal, the pattern close to
the node preserves its shape, but the node moves towards
the pacing site. Importantly, if � or r are increased back
after the node has moved, the node does not return to its
original position, but rather its shape will deform to be-
come symmetrical as described above. Since no parameter
change can induce the node to move away from the pacing
site, node motion is unidirectionally pinned. We note that
we have also observed unidirectional pinning in our ionic
model simulations [15].

When the node is unpinned, we find that the location of
the first node, denoted x1, scales linearly with �, suggest-
ing that the node spacing is independent of electrotonic
coupling. This linear scaling with � in the discontinuous
regime is to be contrasted with the scaling of the node

spacing for smooth alternans profiles (e.g., �2=3�1=3 for
w ¼ 0), which depends strongly on electrotonic coupling.
Physically, this linear scaling reflects the fact that electro-
tonic coupling has a negligible effect on the outer scale
where the alternans profile varies slowly on a scale�� and
becomes relevant only on a scale �� near the nodes. This
adds only a subdominant correction of the order of � to the
x1 �� scaling. Mathematically, it can be related to the
fact that � scales out of Eq. (10) in the limit � 
 � if one
uses the scaled variable ~x ¼ x=� instead of x.

To investigate the consequences of unidirectional pin-
ning, we investigated the pattern evolution in response to
multiple parameter changes. Namely, we changed r and �
following two different paths that connect the same points
in ðr;�Þ. Starting with a pattern with normal jumps at
ðr;�Þ ¼ ð1:16; 30Þ, we move to ð1:26; 14Þ first by increas-
ing r and then decreasing � [path (i)] and vice versa [path
(ii)]. Despite the same start and end parameters, the result-
ing profile characteristics vary significantly depending on
the path followed, as shown in Fig. 3. In Fig. 3(a), paths (i)
and (ii) are denoted by solid and dashed blue arrows,
respectively, with the start and end points denoted as a
black circle and square, respectively. In Fig. 3(b), we zoom
in on the first node of the initial profile (solid black curve)
and final profiles after moving along path (i) (solid blue
line) and (ii) (dashed blue line). Consistent with our sum-
mary above, x1 remains constant along path (i) while �
decreases as r is increased, after which � increases as � is
decreased. Along path (ii) x1 decreases with � and then
remains constant, while � decreases as r is increased. This

is shown in Figs. 3(c) and 3(d), which show � (black
circles) and x1 (red crosses) measured along paths (i) and
(ii), respectively.
In conclusion, we have extended our basic theoretical

understanding of SDA dynamics to the important case of
calcium-driven instability. Furthermore, we have made a
number of new experimentally testable predictions, which
we have validated by detailed ionic model simulations. The
main prediction is that node motion becomes unidirection-
ally pinned when the Cai alternans profile becomes spa-
tially discontinuous above a threshold of Cai-driven
instability. This prediction could be tested by first increas-
ing progressively the pacing rate (decreasing the inverse
restitution slope �), thereby causing the node to move
towards the pacing site, as has already been observed in
some experiments on APD SDA [4,5], and then decreasing
the pacing rate to its original value. If the Cai-alternans
profile exhibits a jump at the node, the node should remain
stationary. Increasing the pacing rate can also cause several
parameters to change, including the degree of Cai-driven
instability. However, we have shown that history-
dependent SDA evolution is robust to multiple parameter
changes (Fig. 3) and, hence, should be observable in more
complex situations. We emphasize that unidirectional pin-
ning is a purely dynamical phenomenon independent of
intrinsic tissue heterogeneities, which can also potentially
pin node motion. However, we expect pinning due to tissue
heterogeneities to be generally bidirectional and, hence,
distinguishable from unidirectional dynamically induced
pining. A second prediction is that the spatial jump in
Cai-alternans amplitude displays remarkably universal fea-
tures. The magnitude and asymmetry of this jump are
insensitive to most parameters except the degree of
Cai-driven instability, and both quantities are generally
history-dependent.
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FIG. 3 (color online). (a) Paths (i) and (ii) (solid and dashed
line, respectively) in ðr;�Þ. (b) Initial profile (solid black line)
and final profiles (solid and dashed blue lines) after moving
along path (i) and (ii). (c),(d) Asymmetry � (circles) and x1
(crosses) along path (i) and (ii), respectively.
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Unidirectional pinning generally makes it harder to
eliminate SDA by node motion once they are formed. We
therefore expect SDA to be more arrhythmogenic for
Cai- than Vm-dominated instability. Given that alternans
are believed to be predominantly Cai-driven in common
pathologies such as heart failure, SDA may play an even
more important role than previously thought in such
pathologies.
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