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We investigate the nucleation of ordered phases, their symmetries, and distributions in dense frictional

hard sphere packings as a function of particle volume fraction �, by imposing cyclic shear and constant

applied pressure conditions. We show, with internal imaging, that the nucleating crystallites in the bulk

consist of 10–60 spheres with hexagonal close packed (hcp) order and nonspherical shape, that are

oriented preferentially along the shear axis. Above � ¼ 0:62� 0:005, crystallites with face centered

cubic (fcc) order are observed with increasing probability, and ordered domains grow rapidly. A

polycrystalline phase with domains of fcc and hcp order is observed after hundreds of thousands of shear

cycles.
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The nucleation and growth of crystals from initially
disordered packings is fundamental to material science
and important to self-assembly of ordered solids from
discrete elements. It is well known that thermal frictionless
hard sphere systems undergo a glass transition above a
volume fraction �g � 0:58 and crystallization above �g

upon application of shear [1,2]. Experiments with colloidal
systems have shown the nucleating crystal to be nonspher-
ical, containing about a hundred particles, with a random
hexagonal close packed structure [3].

Here, we consider the development of ordered phases in
disordered frictional granular sphere packings. Granular
materials are athermal and energy has to be input continu-
ously to rearrange particles. Furthermore, friction forces
alter the stability criterion at contact compared with the
frictionless case, reducing the number of contacts required
for stability from 6 to 4 [4]. Both these factsmake it difficult
to directly apply what has been learned in frictionless hard
sphere systems to granular systems. While simulations
have shown that friction can affect packing [5] and
increase the volume fraction at which disorder can persist
in sheared granular flows to well above those seen in
frictionless systems [6], ordered packings have been ob-
served upon application of prolonged periods of shear in
granular spheres [7,8]. However, nucleation of ordered
phases, their symmetry during nucleation, and evolution
upon prolonged shear need to be investigated to gain a
deeper understanding of crystallization in granular systems.

We address these issues with experiments using a cyclic
shear apparatus which is amenable to three-dimensional
visualization with a refractive index matching technique.
While this technique has been used recently to examine
perturbations to disordered packing [9,10], we perform the
experiments over unprecedented long periods to observe
development of crystals. It is noteworthy that it is difficult
to eliminate the gravitational field in three-dimensional
granular packings and implement constant volume condi-
tions. Therefore, we do the experiments under constant

pressure conditions to have the simplest prescribed con-
ditions. In spite of the many differences, we find remark-
able similarity in the development of order in our
experiments on granular spheres when compared with
those reported in colloidal systems [3].
A schematic diagram of the shear cell filled with glass

beads with a diameter d ¼ 1:034� 0:03 mm is shown in
the inset in Fig. 1(a). A normal stress of �z ¼ �0:4 k Pa is
applied on the top boundary of the cell which is free to
move vertically as the packing fraction changes upon
application of shear. This stress is an order of magnitude
greater than the weight of the grains and is observed to
remove the effects of gravitational gradients on the ob-
served packings. A refractive index matched interstitial
liquid [11] with a small amount of fluorescent dye is
illuminated with a laser light sheet. The particles appear
dark in contrast and are imaged with a digital camera from
an orthogonal direction. A stack of images is then obtained
by linearly translating the plane of illumination along with
the camera to measure the position of all particles with a
precision of 0:1d in three dimensions using standard image
processing. The side walls of the cell are slowly tilted
between ��=36 rad to quasistatically shear the system
and avoid any lubrication effects due to the interstitial
liquid. A more detailed description of the apparatus and
the imaging technique can be found in Ref. [10].
The volume fraction of the glass beads � in the entire

system is obtained by measuring the height of the top
surface of the cell as a function of shear cycle Nsc applied
over a 4 month period [12]. The volume fraction is ob-
served to increase well above the random close packing
fraction �rcp of 0.637 [13] over hundreds of thousands of

shear cycles. A cross sectional image of the initial random
packing and the polycrystalline phase which develops after
Nsc ¼ 5� 105 is shown in Fig. 1(b) and 1(c), respectively.
While ordered regions appear aligned near the boundaries,
crystalline phases in the central regions are not aligned
with the boundary. We simultaneously recorded a stack of
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images in a 44d� 7d� 17d volume in a central region of
the cell 6d from the front wall and the bottom of the cell as
indicated in Fig. 1(a) to avoid direct boundary effects.
Figure 1 shows that � obtained in this region follows, up
to Nsc � 1000 the overall trend except with larger fluctua-
tions due to the smaller size of the observation window. For
the next Nsc � 100 000, the volume fraction of the entire
cell is systematically larger than in the central region. This
difference could be explained by the fact that the
boundary-induced crystallization starts to grow inside the
packing. At Nsc � 100 000, a significant increase in
the value of the packing volume fraction in the central
region can be observed which coincides with the beginning
of the crystal growth in bulk, as will be discussed later in
the text. After half a million shear cycles, the packing
volume fraction of the entire cell and in bulk converge to
a similar value as the entire packing becomes a polycrys-
talline structure.

Figure 2(a) shows the radial density distribution function
gðrÞ as a function of distance r to characterize the develop-
ment of spatial order with �. In the case of a random
system (liquid or amorphous solid), there is only short

range order, and therefore only the nearest coordination
shells are visible, while for a crystalline solid, gðrÞ exhibit
sharp peaks. Figure 2(a) shows that the system remains in a
disordered state until �� 0:62, when a small shoulder in
the second peak of gðrÞ signals the appearance of ordered
domains [14]. The bond orientation order parameter Q6 is
typically used to characterize the appearance of global
hexagonal order and is obtained by using [15,16]

Ql �
�

4�

ð2lþ 1Þ
Xm¼l

m¼�l

jhYlmð�ð ~rÞ;�ð ~rÞÞij2
�
1=2

; (1)

with l ¼ 6. Here, Ylm are the spherical harmonics, �ð~rÞ is
the polar angle, �ð ~rÞ is the azimuthal angle, ~r is the vector
between a particle and its pair, and the angled brackets
indicate averaging over particle pairs. If averaging is per-
formed over all pairs of particles in the system, then one
obtains a measure of the global orientational order Ql;global

in the system, whereas, if the averaging is performed over
nearest neighbors—defined as particles within the distance
to the first minima in gðrÞ—then a local measure of ori-
entational order Ql;local is obtained. For disordered struc-

tures,Q6 goes as the inverse of the number of particle pairs
used in the average and is small [17]. But its value becomes
significantly larger for ordered systems and reaches 0.575
for a fcc crystal [17]. In Fig. 2(b), we plot globalQ6;global as

a function of � averaged over a small 0.05 interval of � to
reduce noise. The value of Q6;global is close to zero for

packing fractions less than � ¼ 0:62 but is then observed
to increase sharply consistent with the onset of crystalli-
zation. Both these global measures show that an ordering
transition indeed occurs in our granular system around the
random close packing fraction �rcp.

To identify the development of crystallites and their
symmetry, we calculate the local bond orientation order
metric Q4;local and Q6;local for each particle in the observa-

tion window. Making a scatter plot of these two measures
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FIG. 2 (color online). (a) A curtain plot of the radial distribu-
tion function gðrÞ as a function of normalized distance r=d for
several volume fractions. Above � ¼ 0:63, several peaks corre-
sponding to a fcc or hcp lattice become visible. (b) Plot of
Q6;global versus �. The sudden increase in the Q6;global value

indicates the beginning of the crystallization. Inset: The layers
indicated by A, B, and C repeat with different periods for hcp and
fcc symmetries.
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FIG. 1 (color online). (a) The volume fraction as a function of
shear cycle number measured inside the viewing volume (red/
gray) and in the entire cell (black). Inset: Schematic diagram of
the shear cell and the central region selected for analysis.
(b)–(c) Transversal view of the shear cell 10 mm from the top
of the system: the initial packing, before applying shear defor-
mations (b), and after 5� 105 shear cycles (c).
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helps us distinguish clearly if hexagonal close packed (hcp)
or face centered cubic (fcc) symmetry are present [see the
inset in Fig. 2(b)]. Figure 3 shows that the points are
broadly distributed before application of shear but clearly
cluster around the values expected for fcc and hcp structure
for Nsc ¼ 5� 105. The lack of any other peaks also im-
plies that no other type of crystalline order develops in our
system. In subsequent analysis, we choose a narrow range
0:08 � Q4;local � 0:16, 0:46 � Q6;local � 0:5 to label hcp

and Q4;local � 0:175, Q6;local � 0:54 to label fcc regions.

Figure 4 shows particles in the midplane of the packings
with different shades depending on whether they belong to
fcc or hcp configuration. (The entire sequence is shown as
a movie in the Supplemental Material [12].) It can be noted
that, even for �<�rcp, small hcp clusters are distributed

inside the system. These ordered clusters were initially
observed to appear and disappear quite frequently but
become more stable with increasing �. By following the
crystallites from one shear cycle to the next, we determined
the probabilities pg and ps with which the crystallites grow

or shrink [3]. Because these two probabilities are equal at
the critical size, we plot in Fig. 5(a) the difference between
pg and ps as a function of the number of particles in the

crystallite. From this plot we estimated the critical size of

nuclei to be 10–60 particles. Remarkably, our results are
similar to experimental studies of thermal colloidal sus-
pensions [3], even though that study was conducted at
constant volume with thermal frictionless hard spheres.
To test if shear has influence on the shape and orientation

of the nucleating clusters, we calculate the moment
of inertia tensor associated with each cluster of size 5 �
N � 50:

Ijk ¼
XN
i¼1

ðr2i � xi;jxi;kÞ; (2)

where N is the number of particles in a cluster, i labels the
particles, and j and k label the components of ~r, the vector
from particle i to the cluster’s center of mass. The square
roots of the eigenvalues of the moment of inertia tensor
denoted by �1;2;3 are shown in Fig. 5(b). For a spherical

nucleus, these values should be identical. Because the
principal radii of the ellipsoid fitting the cluster are in-
versely proportional to �1;2;3, we find that the average

shape of the nuclei is nonspherical, with the principal radii
being roughly in a 2:1:1 ratio [see Fig. 5(b)]. The eigen-
vectors of the moment of inertia tensor then allow us to
determine the orientation of the nuclei. We plot the histo-
gram of the polar angle � from the positive z axis (shear
gradient direction) and the azimuthal angle � in the xy
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FIG. 3 (color online). Scatter plot of Q4;local versus Q6;local for
the packing (a) before shear is applied, � ¼ 0:59, and
(b) Nsc ¼ 5� 105, � ¼ 0:65. Each point corresponds to a
particular particle. At � ¼ 0:65, most of the points are located
near hcp and fcc regions.
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FIG. 4 (color online). A series of snapshots of the crystalliza-
tion process; the red/dark gray spheres and the blue/light gray
ones represent the particles with hcp and fcc symmetry, respec-
tively. The particles in a random configuration are represented
with a reduced size for clarity. (a) Nsc ¼ 1, � ¼ 0:59;
(b) Nsc ¼ 5� 104, � ¼ 0:62; (c) Nsc ¼ 1:5� 105, � ¼ 0:64;
and (d) Nsc ¼ 5� 105, � ¼ 0:65.
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FIG. 5 (color online). (a) The difference between the probabil-
ities of a crystalline nucleus to grow and shrink as a function of the
number of particles in the crystallite.When these two probabilities
becomeequal, the nucleus reaches a critical size. (b) Square root of
the eigenvalues of the moments of inertia tensor as a function of
the number of particles in the nucleus. (c) The histogram of the
polar angle and the azimuthal angle made by the longest axis of
the ellipsoid associated to each cluster. (d) The number of nuclei
NðAÞ as a function of the nucleus surface area, approximated by
the area of a prolate spheroid. The line represents an exponential fit
to the initial decay.
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plane from the x axis (shear direction), made by the longest
axis of the ellipsoid, in Fig. 5(c), respectively. The peaks
are observed at � ¼ �=2 and � ¼ 0, showing that the
orientation of the long axis of the clusters is predominantly
aligned with the shear axis.

In classical nucleation theory [18], free energy of an
ordered nucleus that emerges from a disordered liquid
contains two terms: the bulk term, which is negative and
proportional to the volume of the nucleus, and the surface
term, which is proportional with the liquid-solid surface
free energy � and the area of the interface A. For small
nuclei (N � Nc), the surface term dominates and the
number of the crystallites is expected to be NðAÞ /
exp½��0A=d2	 [3], where �0 is a dimensionless term cor-
responding to the surface free energy. We calculate the
surface area of a crystallite as the area of the ellipsoid
associated with it and plot the corresponding histogram in
Fig. 5(d). From the exponential fit to the initial decay, we
determine �0 ’ 0:023� 0:002. Both the overall decay and
the scale of the decay is consistent with that obtained in
experiments with thermal colloids [3], but it is difficult to
extend this analogy further to calculate the surface tension
because temperature is not well defined in granular
systems.

Next, we turn to how the crystallites grow beyond the
nucleation phase, where some nuclei which reached the
critical size start to grow, while new critical nuclei continue
to be formed. Above � ’ 0:64, all nuclei reached the
critical size, and the growing process becomes more accel-
erated, with the growth of large clusters at the expense of
the smaller ones [Figs. 4(c) and 4(d)]. In Fig. 6(a), we show
the fraction of each crystalline species observed in our
experiments as a function of �. We observe that, once
the crystal starts to grow above �� 0:62, the number of
fcc-like particles jumps, with a greater fraction at the
highest volume fraction reached in our experiments.
Recent studies with colloidal hard spheres have reported
a random stacking in the crystal nuclei [3,19]. However, in
slowly grown colloidal crystals, a clear tendency towards
fcc order has been seen [20]. These results can be

explained by the fact that, for hard sphere systems, the
free energy difference between hcp and fcc order is very
small and the equilibration time is very long [21–23]. In
order to have an estimate of the scale of the crystal domains
in our experiments, we calculate the correlation length
corresponding to the size of the observed domains of fcc
and hcp phases [24]:

� ¼
2
P
s
R2
gðsÞs2ns

P
s
s2ns

: (3)

Here ns is the number of clusters of size s, and RgðsÞ is
their radius of gyration. Figure 6(b) shows that the corre-
lation length of the fcc clusters increases more rapidly than
the correlation length of the hcp clusters above �rcp. Thus,

we conclude that the two phases, fcc and hcp, are well
separated in our system and distinct from a random hex-
agonal close packed phase, in addition to the observation
that the fcc phase becomes more abundant. A similar
evolution has also been observed in numerical simulations
with hard spheres as well [25].
In summary, we have shown with delicate experiments

that sheared granular systems undergo homogeneous nu-
cleation in addition to inhomogeneous nucleation at side-
walls. We measured the size and the symmetry of the
ordered phases in athermal frictional hard sphere systems
for the first time and showed the influence of shear on the
shape and orientation of the crystallites. The process of
nucleation is also surprisingly similar to the one observed
in computer simulations [19] and experiments [3] on ther-
mal colloidal hard sphere suspensions, suggesting that the
development of crystallization in hard sphere systems is far
more universal than previously anticipated.
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