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Continuous, coherent subterahertz radiation arises when a dc voltage is applied across a stack of the
many intrinsic Josephson junctions in a Bi,Sr,CaCu,Og 5 single crystal. The active junctions produce an
equal number of /-V characteristic branches. Each branch radiates at a slightly tunable frequency obeying
the Josephson relation. The overall output is broadly tunable and nearly independent of heating effects and
internal cavity frequencies. Amplification by a surrounding external cavity to allow for the development of

a useful high-power source is proposed.
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Continuous, broadly tunable, and coherent sources of
electromagnetic (EM) radiation are presently unavailable
for frequencies within the ““terahertz gap,” the 0.3—-10 THz
range of crucial importance for many applications [1,2].
This gap can be filled by the ac Josephson effect intrinsic to
an atomic-scale layered superconductor. Application of a
dc voltage V across a single Josephson junction between
identical superconductors leads to an ac Josephson current
and EM radiation with the same frequency f satisfying the
Josephson relation, f = f; = (2e/h)V, where e is the
electric charge and 4 is Planck’s constant [3-5]. By using
two-dimensional arrays of Josephson junctions between
wires of superconducting Nb, coherent radiation was ob-
served when the array was placed parallel to a Nb ground
plane [6] that amplified the radiation but did not affect its
frequency, which obeyed the Josephson relation. However,
the technical problems involved in mass production were
formidable.

The layered, high transition temperature 7, supercon-
ductor Bi,Sr,CaCu,0g. 5 (Bi-2212) behaves as a stack of
intrinsic Josephson junctions (I1JJs) [7]. In Bi-2212, each of
the junctions is naturally identical, as they are evenly spaced
with two junctions per unit cell c-axis edge length of
1.533 nm. Recently, continuous, coherent EM radiation
was induced by applying a V across the stack of N 1JJs
present in small mesas milled out of single crystalline
Bi-2212 [8-18]. The mesas typically have thicknesses
d~1-2 um and areas that vary from ~4 X 107 to
~4 X 10~% m?. The thin mesa shapes were mostly rectan-
gular, but some were square or circular [16]. Since Bi-2212
is extremely anisotropic, behaving for E || ¢ as an insulator
[7], the three-dimensional mesa structure also behaves as an
internal EM cavity, which couples to the nonlinear ac
Josephson currents generated in each junction [8—18].
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Besides satisfying the Josephson relation for a stack of N
Uls, f = f; = (e/h)V/N, it was also consistently re-
ported that f locked onto an internal cavity mode frequency
fmp> where m and p are integers appropriate for the ge-
ometry. By neglecting heating effects, for a very thin (d <
w = {) rectangular cavity of length € and width w, the
relevant transverse magnetic TM?(m, p) modes have fre-
quencies f%, , = (co/2n)¥(m/w)> + (p/€)?, where ¢, is
the speed of light in vacuum and n = /e = 4.2 is the index
of refraction for E || é in Bi-2212 [8-24].

Most workers have thought that the enhancement of the
output radiation by the excitation of an internal cavity
mode was so strong that the radiation from the ac
Josephson current source alone was too weak to observe
[8-14,20-22]. However, recently the contributions to the
output power from the ac Josephson current source alone
and that enhanced by resonance with an internal EM cavity
source were found to be comparable in magnitude
[15,16,23,24]. This created a great deal of controversy.
Here we show clear evidence that the mesas can emit
radiation at many frequencies, without strong interaction
with an internal EM cavity mode. More importantly, the
resulting radiation is tunable over a broad range of
frequencies, allowing for the construction of a powerful
device that could fill the terahertz gap.

We studied two rectangular mesas, R1 and R2. R1 was
prepared by milling a groove into the Bi-2212 substrate,
but R2 was sandwiched between two Au layers. Further
information on R1, R2, and three other mesas of various
shapes are presented in the Supplemental Material [25].
Figure 1(a) is a scanning ion microscope picture of the
topof R1, withw = 99.2-102 um, € = 137-140 pm, and
groove depth d ~ 1.3 um, before the electrode attach-
ments. R1 is ~3% longer and wider at the bottom of the
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FIG. 1 (color online). R1 structure, c-axis resistivity,
outermost-branch IVC, emission output, and frequency spectra.
(a) Scanning ion microscope image. (b) Atomic force microscope
image along A-B in (a). (¢) Outer-branch IVC. Inset: R.(T).
(d) Plot of I(V,,) corresponding to (c). Open circles: Ty, =
Tonset = 84.4 K. (e) Spectral intensities from points A—F in (d).

groove than at the top. Figure 1(b) is an atomic force
microscope scan of the groove profile along the A-B line
in Fig. 1(a). From this d value, we estimate the number of
JJs in the stack to be N,x ~ 850. The hysteresis loop
indicated by the arrows in Fig. 1(c) is typical of the
outermost branch of the /-V characteristics (IVCs) of an
1JJ system. At the largest jump from V = 0.25t0 0.85 V, all
of the N, junctions switch into the resistive state simul-
taneously. In the high-V bias region, R1 is inevitably Joule
heated at a rate of ~16 mW. This huge power dissipation
may cause the negative differential resistance between
I =7 and 25 mA, since the c-axis quasiparticle resistance
R, has a strong T dependence as shown in the inset in
Fig. 1(c). On the return region of the I-V loop where
I ~5 mA, we observed several small steps, indicating
that some of the 1JJs make the transition from the resistive
to the superconducting state.

Figure 1(d) shows the R1 radiation output intensity V,
generated from / on the same scale as in Fig. 1(c). The
dashed curve indicates the expected drift due to thermal
radiation from the sample and its holder. Soon after the
largest jump in the 7-V loop, intense emission of EM waves
was clearly observed. Strong spatial variation of the tem-
perature T, over the top mesa surface was previously
observed [11,13,14] and was thought to strongly affect
the cavity mode-locking condition. We take T, to be the
spatial average of the temperature on the mesa top.
For R1, T. = 81.1 K with a width AT, = 6.6 K. Below
Tiop = Tonser = 84.4 K, indicated by the open circles in
Figs. 1(c) and 1(d), R1 makes the transition to the super-
conducting state, as shown in Fig. 1(d).

Figure 1(e) shows the radiation spectra, offset by 1.5 a.u.
for clarity, measured at points A—F in Fig. 1(d), at which all
of the N, IJJs are in the resistive state. The narrow and
intense peaks in the emission spectra of B—E have maxima
varying from 0.47 to 0.53 THz. The detector resolution-
limited widths of the B and C peaks are too narrow to arise
from synchronization by an internal cavity mode alone and
might involve heating effects [13]. Such outermost-branch
S tunability of up to 40% was found previously by varying
both V and the bath 7 [13,18,19]. Although the wide f
range strongly violates the internal cavity resonance con-
dition f = f7, ,, the Josephson relation for a stack of N,
resistive IJJs [13], f = f; = (2e/h)V /Ny is excellently
obeyed.

We found that EM emission also occurs at many points
in the inner region of the multiply branched IVCs, where
N =1,2,..., Ny is fixed but different for each branch.
The synchronization of the N 1JJs on a single I-V branch is
also not controlled by an internal cavity resonance [26],
unlike some predictions [27]. In Figs. 2(a) and 2(b), the
radiation frequencies f are plotted as color-scaled symbols
on the high-bias regions of the multiply branched /-V
structures for R1 at 35.0 K and R2 at 52.5 K, respectively.
The insets show the full IVCs. All of the R1 curves in
Fig. 2(a) bend backwards with increasing current, indica-
tive of Joule heating [11,13,14,28]. However, R2 is less
susceptible to heating effects, and its IVCs in Fig. 2(b) are
monotonic. The f spectra were obtained at as many (7, V)
bias points as possible. At the bias points denoted by open
diamonds, no emission was detected.

By repeated measurements of the emission from a par-
ticular /-V branch with constant N, we confirmed that f
satisfies the ac Josephson relation f = f; = (2¢/h)V/N.
In Figs. 3(a) and 4(a), we replotted the emission data from

(@) Rr1 T=350K 20 (b) Rz T=525kK

18 3
:
10
. LI
< <
E E
5" o
5 5
5} o 8
f(THz)
m 044
L 0.56
068 15
6 o & e A = 0.80 n n " n n
0.6 0.8 1.0 0.6 0.9 12

Voltage (V) Voltage (V)

FIG. 2 (color online). Emission from IVC points at the color-
coded frequencies was observed at the filled diamonds. No
radiation was detected at the open diamonds. Arrows indicate
the numbers Ny, of resistive junctions from fits to the Josephson
relation. (a) R1. (b) R2. Insets: Full IVCs.
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the IVCs of R1 and R2 shown in Figs. 2(a) and 2(b) in
terms of f(V), representing the data from each branch in
terms of unique symbols and colors. By fits of the data for a
particular branch to the Josephson relation with N = Ng;,
the experimental best-fit value Ny, for each emitting
branch was determined. Three examples each for R1 and
R2 are, respectively, indicated by the dashed lines in
Figs. 3(a) and 4(a) and the arrows in Figs. 2(a) and 2(b).
In the insets in Figs. 3(a) and 4(a), the entire emission data
from the inner IVC branches of R1 and R2 are, respec-
tively, plotted as f(V/Ng). For both R1 and R2, the
Josephson relation f = f; = (2e/h)V /Ny, represented
by each dotted line, is well obeyed.

Since Figs. 3(a) and 4(a) clearly demonstrate that f is
slightly tunable on each branch (indicated by a fixed sym-
bol and color), in Figs. 3(b) and 3(c), we, respectively,
replotted the data from each R1 and R2 branch as f(Ng,).
Although for both samples f is tunable as indicated by the
vertical bars for each fixed branch number Ny;, R1 and R2
display rather different aspects of tunability. The overall
tunability of R1 and R2, which are, respectively, tunable
from 0.44 THz = f = 0.78 THz and from 0.43 THz =
f = 0.76 THz, is nearly the same, as indicated in Figs. 3
(d) and 4(b). However, for R1, this range is primarily due to
the f dependence on the /-V branch number, whereas for
R2, the tunability is greatest on a single branch.

We measured the spectrum for each emitting point in the
inner IVC branches of R1 and R2 and determined its peak
intensity as for points B—E on the outer branch of R1
shown in Fig. 1(e). In Figs. 3(d) and 4(b), we plotted the

(b)

peak intensity of the emissions on a logarithmic scale
versus f for R1 and R2, respectively, and Ny, is approxi-
mately coded with color. The ranges due to mesa profile
variations of the respective internal cavity mode frequen-
cies f},, are indicated at the figure tops. For R1, no
emission was found for f <0.40 THz, excluding the
expected cavity resonance frequencies of 0.255 and
0.357 THz corresponding to the TM?(1, 0) and TM?(0, 1)
modes. Moreover, the spectrum observed in Fig. 3(d) is
almost completely unrelated to any of the internal cavity
modes. For example, the strongest intensity observed
for f =~ 0.575 THz, corresponding to V =0.894 V, [ =
9.56 mA, and N, = 753, is far from the two nearest cavity
resonance frequencies. Although the indicated cavity fre-
quency ranges could be shifted to higher frequencies by
shorter effective € or d values due to hot spots [13], since
T = 35 K in each measurement, such shifts could still not
explain the broad range of observed frequencies. For
Npax = 851, there are ~4.3 X 10"3° ways to have Nj, of
the N,.x junctions in the resistive state, each of which
could in principle lead to a different emission intensity.
Hence, multiply cycling through the IVCs led to a large
variation in peak intensity at that (/, V) point. The synchro-
nization of the Ny, < N, resistive junctions thus occurs
independently of the internal cavity mode excitations [26].
More importantly, the emission spectrum in Fig. 3(d) is
continuous from 0.44 THz = f = 0.78 THz, except for a
gap between 0.66 and 0.73 THz. The gap may be due to
some experimental difficulty in accessing the appropriate
branches. This widely continuous spectrum independent of
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FIG. 3 (color online).

Emission frequencies f and intensities from R1, and f versus resistive junction numbers Ny for R1 and R2.

(a) f(V) plots for 11 R1 IVC branches. Dashed lines: Fits to f = f; = (2¢/h)V/Ng,. Inset: f(V/Ng,) plot for all R1 data. Dotted line:
f=fy. (b),(c) f(Ng) ranges for R1 and R2, with dotted eye guides. (d) Peak intensity on a logarithmic scale versus f for R1.
Calculated f7, , ranges are given at the top. Ny values are color-coded.
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internal cavity resonances implies that f is broadly tunable.
Figure 3(b) suggests that the f values from lower branch-
number emissions could exceed 1 THz. Further tunability
might arise from base 7 variations [13], as discussed in the
Supplemental Material [25].

The peak intensity spectrum of R2 measured at 52.5 K
shown in Fig. 4(b) is also broadly tunable, with emission
for 0.43 THz = f = 0.76 THz and a small gap between
0.67 and 0.75 THz. For R2, the f range from 0.43 to
~0.55 THz is below the range of the lowest cavity reso-
nance frequency f7, values. Unlike the peak intensity
spectrum of R1, the largest intensity at 0.565 THz is close
to this f7 5 range. In this case, the synchronization of the N
resistive junctions could be aided by the excitation of this
internal cavity mode [26,27].

We measured the full angular dependence of the radia-
tion from R2 on the outermost branch at f = 0.639 THz,
and the results are shown and discussed in the
Supplemental Material [25]. Although the observed angu-
lar dependence is similar to that expected from the low-Q
tail of the TM?(1, 0) cavity mode excitation, the frequency
is far from f{, but could be amplified by excitation of a
higher frequency mode, as indicated. We thus determined
[15,16,23,24] that the angularly integrated output power at
this frequency is ~0.2 uW, somewhat smaller than
previously reported [8—19]. In addition, a much larger
emission peak intensity, with an estimated overall emission
power of 4.8 uW, was found at 0.557 THz, which is much
closer to f{ . Besides the excitation of the TM*(1, 0) mode,
this strong inner branch emission could have been en-
hanced by R2 being sandwiched between two Au layers
[23]. More importantly, the large range in observed f
values well below the f7 , range is clear evidence that the
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FIG. 4 (color online). Emission frequencies and intensities
from R2. (a) Plots of f(V) for 8 branches in the R2 IVCs.
Dashed lines: Fits to f = f; = (2¢/h)V/Ng. Inset: Plot of
f(V/Ng,) for all R2 data. Dotted line: f = f,. (b) Peak intensity
on a logarithmic scale versus f for R2. Calculated f7, , ranges
are given at the top. Ny, values are color-coded.

highly tunable emission itself can occur without excitation
of an internal cavity mode.

Although R1 was prepared by forming a groove into the
Bi-2212 substrate, R2 stood atop a Au substrate. The
heating effects and EM boundary conditions for R1 might
be significantly different from those for R2 [27]. Although
the synchronization of the Ny, junction emissions from R2
is likely to be enhanced by internal cavity resonances [20],
synchronization of the Ny, emissions from R1 could arise
from the radiation itself [26] but is more likely to be
enhanced by the shunt capacitance in the electrical circuit
arising from the nonemitting insulating junctions in the
adjacent Bi-2212 substrate [29].

To determine whether the excitation of an internal cavity
mode was an essential feature of the coherent radiation
obtained from mesas of Bi-2212 under the application of V
across the stack of IJJs in the mesa, we examined the inner
branches of the IVCs. We found these internal branches to
emit radiation over a broad frequency range. Hence, we
conclude that the primary source of the intense, coherent
subterahertz radiation is the Josephson current and that the
internal EM cavity produced by the geometrical shape of
the emitting mesa is at best of minor importance and, for
one sample, completely irrelevant. Hence, broadband, tun-
able, continuous coherent radiation can be obtained in the
subterahertz f range from Bi-2212 mesas. Since the wave-
length in vacuum is n = 4.2 times longer than in the mesa,
we propose that a high-power device can be constructed by
surrounding the mesa with an external, tunable high-Q EM
cavity [30,31]. By examining yet lower inner branches, it
ought to be possible to increase the upper f limit into the
1-10 THz range. Hence, it is now relatively straightfor-
ward to produce broadly tunable, continuous, coherent
radiation over the range of the terahertz gap.
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