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We numerically investigate Andreev reflection in a graphene ring with one normal conducting and one

superconducting lead by solving the Bogoliubov–de Gennes equation within the Landauer-Büttiker

formalism. By tuning chemical potential and bias voltage, it is possible to switch between regimes where

electron and hole originate from the same band (retroconfiguration) or from different bands (specular

configuration) of the graphene dispersion, respectively. We find that the dominant contributions to the

Aharonov-Bohm conductance oscillations in the subgap transport are of period h=2e in retroconfiguration

and of period h=e in specular configuration, confirming the predictions obtained from a qualitative analysis

of interfering scattering paths. Because of the robustness against disorder and moderate changes to the

system, this provides a clear signature to distinguish both types of Andreev reflection processes in graphene.
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Since its first experimental realization in 2004 [1], gra-
phene has strongly influenced the field of mesoscopic
physics due to the peculiar behavior of its electronic ex-
citations as massless Dirac fermions. Two prominent fea-
tures, namely, the effects of Klein tunneling [2] and
Andreev reflection [3], concern processes at interfaces
between regions of different doping and normal metal-
superconductor (NS) junctions, respectively, (for a review
see Ref. [4]). While both effects are known to be closely
related [5], different aspects of Klein tunneling have be-
come experimentally accessible in the last years [6],
whereas specular Andreev reflection has not been observed
to date, although there exist a number of proposals for the
experimental control [7] and detection [3,8] of this process.
In this Letter, we will present a novel approach concerning
the identification of specular Andreev reflection, distin-
guishing it from conventional retroreflection, and discuss
the advantages over previous works in the field.

Our approach is based on the observation that in general,
the probability for an incident electron to be reflected as a
hole is less than one. This allows for effects typical for
phase-coherent mesoscopic devices, like universal conduc-
tance fluctuations or Aharonov-Bohm oscillations [9] in the
magnetoconductance. While in normal metals, the funda-
mental period of these oscillations is given by the flux
quantum �0 ¼ h=e, it is half the value for Andreev
(retro)reflection in conventional metals, due to the charge
2e of a Cooper pair. However, this is not true anymore in the
case of specular Andreev reflection, therefore providing a
criterion to distinguish between specular and retroreflec-
tion. In order to show this, we consider the phases due to the
magnetic flux that are picked up by the various scattering
paths. In this analysis, we restrict ourselves to the contri-
butions up to first order in the sense that we take processes
into account that involve only a single electron-hole

conversion process, and that contain at most one additional
round trip of electron or hole, respectively; higher order
contributions connected with additional round trips are
often times negligible [10,11]. The corresponding paths
are summarized in Fig. 1. In order to obtain the magneto-
conductance for the two types of Andreev reflection [spec-
ular (s) and retro (r)], we sum up the amplitudes as defined
in Fig. 1 for the various paths coherently to obtain the
corresponding Andreev reflection probabilities:

Rsð�Þ ffi jsþ þ s� þ s0þei� þ s0�e�i�j2;
Rrð�Þ ffi jrþei� þ r�e�i� þ r0þe2i� þ r0�e�2i�j2; (1)

where s0� ¼ s0�e þ s0�h, r0� ¼ r0�e þ r0�h, and � is the

magnetic flux measured in units of the flux quantum �0.
Assuming jsj � js0j for any zeroth- and first-order ampli-
tudes, respectively, we obtain

Rsð�Þ ffi R0
s þ 2Re½ðs0þs�0 þ s0s

0��Þei�� þO½ðs0Þ2�; (2)

where s0 ¼ sþ þ s� and R0
s contains contributions that are

constant with respect to �. Therefore, in the case of spec-
ular reflection, oscillations of period h=e are dominant. In
contrast, in the case of retroreflection, contributions of
period h=2e are dominant, as expected:

Rrð�Þ ffi R0
r þ 2Re½rþr��e2i�� þO½rr0; ðr0Þ2�; (3)

where again R0
r contains �-independent terms and we

assume jrj � jr0j for any zeroth- and first-order ampli-
tudes, respectively.
In order to test this analysis on the basis of a microscopic

model, we implement the Bogoliubov–de Gennes
Hamiltonian [12]

H ¼ H � EF �
� EF �H �

� �
(4)
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within the tight binding formalism of graphene

H ¼ X
i

Uijiihij þ
X
hi;ji

�ijjiihjj (5)

where the second sum runs over nearest neighbors and
Ui ¼ UðriÞ is a position-dependent potential. In this nu-
merical calculation, all higher order contributions are also
taken into account. In Eq. (4), we assume �i ¼ �ðriÞ 2 R
for the superconducting order parameter � ¼ P

i�ijiihij.
The presence of a magnetic field is captured by a Peierl’s
phase in the hopping matrix element

�ij ¼ ��0 exp

�
2�i

�0

Z rj

ri

AðrÞdr
�
; (6)

where �0 � 2:7 eV is the graphene hopping integral,�0 ¼
h=e is the magnetic flux quantum, and the line integral is
taken along the straight path between sites i and j.

The structure of the graphene device under considera-
tion is schematically shown in Fig. 1. The ring-shaped
structure is generated by setting the appropriate hopping

matrix elements to zero in Eq. (5). The two semi-infinite
leads also exhibit the graphene lattice structure; supercon-
ductivity is induced into the right lead due to the proximity
effect of a superconducting electrode on top of the gra-
phene. We choose to orient the leads to exhibit armchair
edges and later comment on the reason for this particular
choice. The whole ring is penetrated by a uniform perpen-
dicular magnetic field of strength B, described by the
vector potential AðrÞ ¼ �By�ðd� jxjÞêx. The origin of
coordinates is taken at the center of the ring.
In order to fulfill the mean-field requirement of super-

conductivity, which demands the superconducting coher-
ence length � ¼ @vF=� to be large compared to the
wavelength �S in the superconducting region [3], we in-
troduce additional doping into the superconducting region
by applying a gate potential Ui ¼ U�ðxi � dÞ. Which type
of Andreev reflection occurs at the NS interface is then
determined by the excitation energy " [i.e., the eigenvalues
of Eq. (4)] and the Fermi energy EF, as shown in Fig. 2. In

retroconfiguration, EF > " > 0, where vðhÞ
y � vðeÞ

y < 0 for
the y components of the electron and hole velocities,
both electron and hole traverse the same arm of the ring.
In specular configuration, 0< EF < ", the hole is reflected

back through the other arm of the ring, since vðhÞ
y � vðeÞ

y > 0.
In the following, we choose jUj � EF, justifying the
adoption of the step-function model for the superconduct-
ing order parameter, �i ¼ ��ðxi � dÞ [3].
In order to compare retro (r) and specular (s) configu-

rations, we will choose "ðrÞ ¼ EðsÞ
F and "ðsÞ ¼ EðrÞ

F since
then the states in both configurations exhibit the same
wavelength and there is the same number of propagating

FIG. 1. (a) Device geometry showing a graphene ring structure
that is penetrated by a magnetic flux � measured in units of the
flux quantum �0. At the interface with the superconductor
(shaded region), electron-hole conversion may occur. (b) The
gauge is chosen such that each of the eight individual electron
(solid lines) and hole (dashed lines) paths picks up a phase
��=2 as indicated. (c) Scattering paths for electrons injected
from and holes leaving through the left normal conducting lead;
only zeroth and first-order contributions are included, i.e., terms
containing a single electron-hole conversion process and at most
one additional round-trip of the electron or the hole. The paths
are categorized according to the total phase that is picked up, and
each path is associated with a corresponding amplitude, where
first-order amplitudes are indicated by a prime.

FIG. 2. Schematics of the excitation spectrum (lower panel)
and surfaces of constant excitation energy in k space (upper
panel) in the cases EF > " > 0 (retroconfiguration) and 0<
EF < " (specular configuration). Solid and dashed lines indicate
electron- and holelike states, respectively, (hole) states originat-
ing from the valence band are shaded gray. The small arrows in
the upper panel indicate the direction of propagation of the
corresponding states. Electron-hole excitations are drawn assum-
ing conservation of ky at the NS interface.
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modes. We further choose "ðrÞ, EðsÞ
F 	 "ðsÞ, EðrÞ

F so that for
nearly each value of ky, there exist electron-hole scattering

channels.
The transport properties of the system are obtained from

the scattering matrix S that is calculated in the framework
of the Landauer-Büttiker formalism using a variant of the
recursive Green’s function technique [13] we recently
applied to a similar setup [10]. This technique is an effi-
cient way to obtain the relevant parts of the system’s
Green’s function from the surface Green’s functions of
the isolated leads, which is known analytically [14], by
solving Dyson’s equation exactly, treating the coupling of
the leads to the ring region as perturbation. The Fisher-Lee
relation [15] then relates the Green’s function to the
S matrix, from which the transmission function may be
obtained. In this framework for elastic transport, Green’s
function and scattering matrix are parametrized by the
eigenvalues " of the Hamiltonian (4).

In the following, we will concentrate on the regime
" < �, in which there are no propagating modes in the
superconducting lead, so that electrons injected from the
normal conducting lead are reflected back either as elec-
tron (e) or hole (h). The scattering matrix thus has the
structure

S ¼ ree reh
rhe rhh

� �
(7)

from which the differential conductance for the Andreev
processes is given by

dI

dV
¼ 4e2

h
TrðryherheÞ (8)

where the factor 4 accounts for spin degeneracy and the
quantization of charge in units of 2e.

In Fig. 3, we show the calculated transmission for a ring

of width w ¼ 87
ffiffiffi
3

p
a0 and outer radius R ¼ 500a0, where

a0 is the distance between nearest neighbors. The trans-
mission function exhibits Aharonov-Bohm oscillations on
top of a low frequency backgroundwhich is due to universal
conductance fluctuations. The position of the NS interface
is given by d ¼ 400a0. The chosen dimensions of the ring
are large enough to exclude finite-size effects while still
being numerically manageable. For the superconducting
order parameter, we choose a value of � ¼ 0:03�0 �
80 meV, which may appear unrealistic at first sight, con-
sidering the fact that typical values are up to a few meV.
However, by making this choice we scale the value of the
superconducting order parameter according to the scale of
the system size, such that the dimensionless factor�R=@vF

stays of the same order of magnitude, compared with values
realized in experiments [11,16]. Thus, for a realistic system
size of R
 10�6 m, our choice of�would correspond to a
value of a few meV for the superconducting gap. Note that
due to these low energy scales and the rather large spacing
ofmodes resulting from the narrowgeometry of the electron

waveguides in such a ring structure, in specular configura-
tion only the regime of a low number of modes is accessible
for realistic choices of system parameters. Also note that
due to strong electron backscattering at the front of the hole
and at the rough edges of the ring, the average value of the
differential conductance is much less than a conductance
quantum, e2=h.
The average radius �r of the scattering path is calculated

according to �r2�B0 ¼ h=ne, where n ¼ 1 (n ¼ 2) in spec-
ular (retro) configuration and B0 is the (dominant) period
of the oscillation. Evaluating the period of the oscillations

shown in Fig. 3, we obtain �rðsÞ � 420a0 in specular con-

figuration and �rðrÞ � 425a0 in retroconfiguration. The ob-
tained values lie well within the inner and outer radius of
the ring and close to the arithmetic mean R� w=2 �
425a0, therefore confirming the predictions obtained
from Eqs. (2) and (3). Minor contributions of period h=e
in retroconfiguration and h=2e in specular configuration
visible in Fig. 3 may arise due to terms neglected in
Eqs. (2) and (3), scattering off the sharp boundaries of
the ring structure, and the fact that for the electron-hole
conversion at the NS interface ky is not strictly conserved.

Other strong evidence that supports our interpretation of
the two different periods is the breakdown of this particular
signature that is observed for a shift of the position of the
NS interface on the scale of the width of the ring. Indeed,
while in Ref. [17]—where a three-terminal graphene junc-
tion is analyzed—the exact position of the NS interface has
no effect, it matters in our case; the reason is that � is
comparable to or even less than the system size, while in
Ref. [17] the superconducting coherence length greatly

FIG. 3. Differential magnetoconductance for specular (black)

and retro (gray) configuration for EðrÞ
F ¼ 0:025�0 ¼ "ðsÞ, EðsÞ

F ¼
0:001�0 ¼ "ðrÞ, corresponding to 8 modes in the normal con-
ducting lead, including all degeneracies (spin, valley, electron or
hole). The high doping in the superconducting lead is chosen
such that EF � U ¼ 0:5�0 in both cases. Other parameter values
are provided in the main text. The period of the dominant

oscillation is BðsÞ
0 � 1:8� 10�6a�2

0 h=e in specular configuration

and BðrÞ
0 � 8:8� 10�7a�2

0 h=e � 0:5BðsÞ
0 in retroconfiguration.

The weak beating pattern in retroconfiguration and the asym-
metry in specular configuration arise due to minor contributions
of contrary frequencies.
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exceeds the system dimensions. If the interface is too close
to the hole region [see Fig. 4(a) inset], then specularly
reflected holes are forced to traverse the same arm as the
incoming electron. In this case, one should observe h=2e
oscillations in specular configuration. In contrast, if the
interface is too far from the hole [see Fig. 4(b) inset], holes
may significantly be reflected through the other arm, e.g.,
due to increased scattering at the ring boundaries. This
would manifest itself in the observation of h=e oscillations
in addition to the h=2e oscillations in retroconfiguration.
This behavior is confirmed in the observed magnetooscil-
lations, as shown in Fig. 4.

Apart from that, the h=e vs h=2e signature proves to be
very robust against moderate changes to the length and
energy scales in the system, such as the extent of the
magnetic field or the ratio of Fermi wavelength and the
width of the NS interface. We also tested that the signature
persists when more propagating modes are present in the
lead, leading to values of the average conductance which
are much larger as compared to the few-mode situation
shown in Fig. 3. Additionally, the signature is hardly
affected by bulk disorder, which is a major advantage of
our setup. In Fig. 5, we show the magnetoconductance of
the system used in Fig. 3 with a particular random short-
range disorder configuration, which is realized by applying
an uncorrelated, random on-site potential of Gaussian dis-
tribution with zero mean and width � ¼ 0:01�0 to each
site. In addition, the NS interface has been smeared out
over a distance l ¼ 90a0 in this case. The robustness of the
effect can be explained from the topological nature of the
signature: since all microscopic scattering paths can be
classified into just two groups—yielding h=e or h=2e
oscillations, respectively—according to which arm is trav-
ersed by the quasiparticles, impurity scattering and the
resulting deflection of quasiparticles has no adverse effect
as long as scattering between the groups is weak, while
scattering within one group may be arbitrarily strong. In
addition, note that while our description of transport via the
scattering matrix assumes complete phase coherence, a
signature that distinguishes retro from specular Andreev

reflection is assumed to persist also in the case of a finite
phase coherence length. More specifically, if the phase
coherence length is on the order of the ring circumference,
first-order amplitudes in Eqs. (2) and (3) may be neglected.
Then, retroreflection would still manifest itself in
h=2e oscillations, while there would be no oscillations at
all in the case of specular reflection.
Before we conclude, we would like to add a remark

concerning the choice of armchair boundary conditions
in the leads we employed in our analysis. In a tight binding
implementation of graphene, there are two simple choices
for the orientation of the leads. Often, zigzag edges are
considered to represent a generic boundary condition for
graphene ribbons [18]. In this case, edge states are present
in the system that modify the simple picture provided in
Fig. 2 by adding additional scattering channels between
bulk and edge states while removing certain scattering
channels between bulk states due to the conservation
of the so-called pseudoparity symmetry that acts like a
selection rule [19]. In the realistic limit of metal leads
providing a large number of propagating bulk modes, this
effect should be less important. However, for the system

FIG. 4. Breakdown of the h=e vs h=2e signature for shifted positions of the NS interface, as explained in the text. Other parameters
and color coding are chosen as in Fig. 3. For d ¼ 340a0 (left), in specular configuration one observes oscillations of period h=2e as in
retroconfiguration. For d ¼ 490a0 (right), contributions of specularly reflected holes in retroconfiguration become important, leading
to the observation of additional h=e oscillations. The value of the superconducting coherence length is � ¼ 50a0.

FIG. 5. Magnetoconductance of the system used in Fig. 3 with
a smooth potential profile (inset) with l ¼ 90a0 and bulk dis-
order of strength � ¼ 0:01�0 as explained in the text. The h=e vs
h=2e signature still persists. The color coding is the same as in
Fig. 3.
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geometry used in the numerical calculations in combina-
tion with the low energy scales, it may significantly affect
the observed behavior. In order to avoid this influence, we
chose armchair boundary conditions in the leads that do not
provide any edge states. Note in addition, that in realistic
systems the zigzag-specific effect would also be sup-
pressed since the zigzag edge state is not protected against
disorder when next-nearest neighbor hopping is taken into
account [20]. Therefore, we are convinced that our results
based on armchair edges in the reservoirs describe the
generic situation for wide leads.

In conclusion, we have shown numerically that the fre-
quency of Aharonov-Bohm oscillations in graphene rings
provides a clear and feasible signature for distinguishing
specular Andreev reflection from retroreflection. This fea-
ture can be explained qualitatively by considering the in-
terference of the different scattering processes up to first
order. The signature is robust against the presence of dis-
order and persists within a certain range for the position of
the NS interface before it breaks down when the interface
gets too close to or too far away from the hole of the ring.
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