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We study the interaction between a solid particle and a liquid interface. A semianalytical solution of the

nonlinear equation that describes the interface deformation points out the existence of a bifurcation

behavior for the apex deformation as a function of the distance. We show that the apex curvature obeys a

simple power-law dependency on the deformation. Relationships between physical parameters disclose

the threshold distance at which the particle can approach the liquid before capillarity provokes a ‘‘jump to

contact.’’ A prediction of the interface original position before deformation takes place, as well as the

attraction force measured by an approaching probe, are produced. The results of our analysis agree with

the force curves obtained from atomic force microscopy experiments over a liquid puddle.
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In nature and manmade systems, lying on a vast domain
of physics from micro- and nanofluidics, tribology, bio-
physics, etc., to atomic force microscopy (AFM) experi-
ments, we often encounter situations where liquids
undergo deformations due to the interaction with solid
objects. Despite a significant range of object sizes, the
deformation occurs at a nanoscopic scale induced by van
der Waals (vdW) molecular interactions [1]. This defor-
mation grows as the gap decreases, just before a critical
distance at which the system suffers an irreversible ‘‘jump-
to-contact’’ process and forms a capillary bridge [1,2].
Nowadays, the study of liquid properties at the nanoscale
[3] based on near-field technique experiments is still a
great challenge. Imaging liquids and quantifying their
properties at this length scale require one to model the
interaction force between liquids and nanoprobes, to de-
termine the near-field liquid deformation, and to predict the
critical distance before capillary contact. The aim of this
Letter is to address all these points.

By employing an augmented Young-Laplace equation,
the interface deformation due to a quasistatic approach of a
particle is studied. An exact expression of the pressure field
created by the vdW interaction between a sphere and a
deformable surface is employed. The resulting strongly
nonlinear interface equation, which includes an exact ex-
pression of the vdW volume attractive potential, is ana-
lyzed. A dimensionless treatment is made in order to
generalize the problem whatever the length scale of the
sphere radius. Likewise, a bifurcation diagram of the inter-
face deformation, as well as a capillarity region correspond-
ing to the particle-liquid wetting development, is clearly
identified. Finally, by performing AFMmeasurements on a
standard liquid polydimethylsiloxane, we validate our theo-
retical results and show that it is possible to predict the
interface deformation, to obtain the critical distance before
the capillary jump, and also to measure the Hamaker
constant of a liquid with an accurate resolution up to

20 nm, which completely determines the near-field tip
force.
We start by modeling the tip as a sphere of radius R,

which provokes the deformation of a liquid surface origi-
nally placed at z ¼ 0 (Fig. 1). The pressure difference
across the interface is described by

2�� ¼ ���g�þ�; (1)

where � is the local mean curvature, � is the surface
tension, �� is the density difference between the liquid
phase and air, g is the acceleration due to gravity, and � is
the interface vertical coordinate. � is the pressure field at
the interface resulting from the vdW attractive potential
exerted by the whole sphere over the liquid:

� ¼ 4HR3

3�
½ðD� �Þ2 þ r2 � R2��3; (2)

where H is the Hamaker constant and D is the distance
from the center of the sphere to the original position of the
interface. Here no assumption is made for this expression,
which is obtained directly from the Hamaker theory [4]. In
previous studies, the potential was approximated by

FIG. 1 (color online). Geometry of the sphere-air-liquid
system.
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considering a paraboloidlike microscopic tip with a local
two-parallel-plate interaction [5] and a local sphere-plan
interaction [6].

Taking R as the characteristic length scale of the system,
we define the distanceD� ¼ D=R, the horizontal r� ¼ r=R
and vertical z� ¼ z=R coordinates, the deformation �� ¼
�=R, and the curvature �� ¼ �R; we also introduce the
modified Hamaker number Ha ¼ 4H=ð3��R2Þ and, by

using the capillary length � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð��gÞp

, the Bond num-
ber B0 ¼ ðR=�Þ2. Typically, for ordinary AFM experi-
ments in air, the values taken by these numbers range
mostly over Ha 2 ½10�7; 10�2� and B0 2 ½10�11; 10�8�.
For small deformations of the interface, merging Eqs. (1)
and (2) gives the dimensionless expression

1

r�
d

dr�

�
r� d��

dr�

ðd��
dr� Þ2 þ 1

�
¼ B0�

� � Ha

½ðD� � ��Þ2 þ r�2 � 1�3 :

(3)

Note that the same relation can be obtained by minimizing
the total energy functional with respect to � [7].

Equation (3) is strongly nonlinear mainly due to the
nature of the interaction term. A symmetry boundary con-
dition ½���0 ¼ 0 is considered at r� ¼ 0. Far from the axis,
at r�1 � 0, where the vdW potential is negligible (� � 0)
and the profile is nearly flat (½���01 � 1), the boundary
condition is given by the asymptotic solution of Eq. (3):

½���01 þ ffiffiffiffiffiffi
B0

p K1ðr�1
ffiffiffiffiffiffi
B0

p Þ
K0ðr�1

ffiffiffiffiffiffi
B0

p Þ�
�1 ¼ 0; (4)

where K0 and K1 are zero- and first-order modified Bessel
functions of the second kind.

A numerical method implemented within a MATLAB

routine was used to solve Eq. (3). In Fig. 2, an example
of the interface shape at equilibrium for different separat-
ing distances D� is shown, where a ‘‘bumplike’’ deforma-
tion is clearly observed. The inner zone is dominated by the
interaction term; hence, it is restricted to the region where
the attractive influence of the sphere is significant, approxi-
mately up to r� ¼ 1. As a consequence, the external region
spans from this boundary to a distance near the dimension-
less capillary length �� ¼ 1=

ffiffiffiffiffiffi
B0

p
, where the asymptotic

solution perfectly describes the declining capillary behav-
ior of the deformation. The radial extension of both regions
is barely modified when increasing D�, while, as it is
reduced, the height of the profile undergoes a significant
and monotonic growth. Note that the results show that
½���0 � 0:1 for any r�; hence, a linearization of the curva-
ture in Eq. (3) can be used for simplification.

The evolution of the dimensionless height of the inter-
face apex ��

0 as a function of D� is shown in Fig. 3.

Depending on the initial conditions employed to solve
Eq. (3), we find two different positions of the apex defor-
mation. The lower curve is a stable branch, since it corre-
sponds to the position which provokes the minimal

deformation energy, whereas the upper curve indicates an
unstable branch with higher energy. When D� decreases,
��
0 of the stable branch grows monotonically, while that for

the unstable branch decreases, until a threshold distance
D�

min, below which the slope becomes undefined. Indeed,

for separation distances shorter than the bifurcation point
D�

min, no solution for Eq. (3) is found. This behavior is

confirmed by solving the dynamic evolution of the inter-
face [8] in which the unsteadiness arises from the viscous
normal stress at the interface. For D� <D�

min the instanta-

neous profile diverges until the sphere surface is reached,
and the final equilibrium profile corresponds to a liquid
bridge wetting the tip [9], while for D� � D�

min the stable

profile given by Eq. (3) is recovered after a relaxation time
� ¼ R�=�, � being the liquid viscosity.
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FIG. 2. Equilibrium dimensionless profiles obtained from solv-
ing Eq. (3), for Ha ¼ 10�3 and B0 ¼ 10�10. Each curve corre-
sponds to a profile generated with D� equal to ð1þ n=20ÞD�

min,

where n ¼ 0; 1; 2; . . . ; 10 and D�
min is the minimum dimension-

less distance at which a solution for Eq. (3) exists. Herein,
D�

min ¼ 1:1682 and ��
max ¼ 0:0541.
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FIG. 3. Bifurcation diagram of the deformation apex for
Ha ¼ 10�3 and B0 ¼ 10�10. Solution of Eq. (3) at r� ¼ 0
(	), Eqs. (5)–(7): stable (solid line) and unstable (dash-dotted
line) branches and position of the tip surface (dotted line).
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For the values of B0 considered in this study, a simple
dependency of the apex curvature ��

0 on the dimensionless

height of the interface apex ��
0 is obtained empirically [8]:

��
0 � C0

ffiffiffiffiffiffiffiffiffiffiffi
ð��

0Þ3
Ha

s
; (5)

where C0 ¼ 0:09
 0:01. Despite the complexity of the
attractive potential, a very particular shape is observed at
the apex. Indeed, the curvature ��

0 is found to simply evolve

as ð��
0Þ3=2.

From Fig. 1, we have the geometric relation

D� ¼ 1þ ��
0 þ 	�0; (6)

where 	�0 ¼ 	0=R is the dimensionless gap between the

sphere surface and the apex.
By considering a binomial expansion in Eq. (3) at r� ¼ 0

for the small parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ha=2�

�
0

3
p

, a second-order approxi-
mation for 	�0 can be written as

	�0 ¼
1

2

�
Ha

2��
0

�
1=3 � 1

8

�
Ha

2��
0

�
2=3

: (7)

A good description of ��
0 as a function of D� is obtained

when combining Eqs. (5)–(7). In a bifurcation diagram
(Fig. 3), the two possible stable and unstable solutions
for the apex position are recovered. The minimum distance
D�

min, at which we can approach the sphere to the interface

before it ‘‘jumps,’’ corresponds to the maximum stable
deformation ��

max. This point where the branches converge
also marks the distance at which the attraction potential
becomes so large that the restoring surface tension and
gravity forces are unable to hold it anymore, and no
equilibrium profile is observed. A capillary-influenced ex-
tent, where the attractive force increases without limit and
leads to the irreversible wetting process of the probe, is
delimited. Finally, minimizing D� with respect to ��

0, we

obtain D�
min ¼ 1þ ��

max þ 	�min, with

��
max ¼

� ffiffiffiffiffiffiffi
Ha

p
4

�
1

2C0

�
1=3

�
2=3

; (8a)

	�min ¼ 2��
maxð1� ��

maxÞ: (8b)

Therefore, D�
min and ��

max grow monotonically when in-

creasing Ha (Fig. 4).
The sphere-liquid interaction force is equal to the addi-

tion of the deformation and the gravity forces. In turn, the
deformation force is given by the derivative, with respect to
��
0, of the deformation energy, calculated from integrating

the surface deformation, as follows:

F�¼�2��R2 d

d��
0

�Z ��

0
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð½���0Þ2

q
dr��ð��Þ2

2

�
: (9)

In order to validate our model, AFM experiments have
been conducted. Indeed, local scanning probe techniques
allow us to measure liquid interface properties with high

sensitivity in a geometry close to those considered in our
study [10–16]. A polydimethylsiloxane puddle with a di-
ameter of 2 mm, a thickness of around 200 �m (consid-
ering a heavy drop analysis [17]), and a surface tension of
3:1� 10�2 N=m was deposed on a Si=SiO2 substrate. An
Agilent Technologies 5500 scanning probe microscope
was employed in contact mode to obtain the force curve
over the puddle. The experiment was made by using a
scanning probe Nanotools� model B1-HDC (single-
crystal silicon), with a tip radius of 20 nm measured
from the capillary force [2], a cantilever stiffness of
0:2 N=m deduced from thermal noise [18,19], and a reso-
nance frequency of 15 kHz. The tip was placed near the
puddle, and a force curve over the substrate was obtained.
Once the calibration factor and the stiffness were calcu-
lated, the probe was retracted 225 �m and then placed
above the center of the puddle. Several scanning cycles,
composed of an approach-withdrawal displacement of
2 �m (motion of a piezoelectric actuator) and a subse-
quent automatic approach of the same size (displacement
with a step motor), were then executed until the interface
was reached and the tip was dipped. The force curve was
carried out by taking 50 samples per nanometer and a
vertical scan rate of 10 nm=s. The common resolution of
an AFM is limited by the thermal noise, which takes values
of around 10�12 N [20] at 295 K. In our experiments, this
force presented a greater magnitude than thermal noise.
The orders of magnitude and behaviors of theoretical

and experimental force curves (Fig. 5) are in very good
accordance. When the nanoscopic tip is placed far from the
sample, at a distance greater than 2Dmin, the deflection of
the cantilever is negligible. When it approaches the inter-
face, from 2Dmin to Dmin, the AFM measures a gradually
increasing force. Within the frame of reference employed,
cantilever deflections toward the interface are considered
as negative values and, thus, attraction forces as well.
Before reachingDmin, the force increases abruptly, provok-
ing a great deflection of the cantilever, which implies a
magnitude of around 10�11 N. The gap arrives at its
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FIG. 4. Minimal dimensionless distance D�
min (solid line) and

apex deformation ��
max (dashed line) as a function of Ha,

corresponding to B0 ¼ 1:308� 10�10. AFM range (shaded
area).

PRL 108, 106104 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 MARCH 2012

106104-3



minimum value when reaching Dmin. Hence, any separa-
tion distance smaller than Dmin means imminent contact
and the subsequent displacement of the liquid over the tip,
which provokes an irreversible wetting process. The best fit
is shown by the theoretical curve obtained with
H ¼ 4� 10�20 J, for which Ha ¼ 1:4� 10�3, the Bond
number being B0 ¼ 1:308� 10�10. The obtained magni-
tude of H is very close to the value H ¼ 4:8� 10�20 J
deduced from the literature [1,21,22], since the AFM mea-
surement error is of around 20%. Consequently, a separa-
tion distance of Dmin ¼ 24
 4� 10�9 m, at which the
jump-to-contact process happens, is found. In such a way, a
reference position at the nanoscopic scale is now available
when scanning with an AFM probe over a liquid surface.

In Fig. 6, the maximum dimensionless force F�
max ¼

�Fmax=ðR�Þ, as a function ofHa, shows a behavior similar
to the quantities described in Fig. 4. Therefore, it exhibits a
linear dependency represented by F�

max � 0:7��
max, which

is consistent with the fact that the surface energy follows
E� �ðR��

maxÞ2, for small displacements of the interface.
In summary,�max, Fmax, andDmin increase in magnitude

when increasing H. Likewise, an increase in R provokes
the enlargement of �max and Fmax; nevertheless, it causes a
decrease of Dmin. For very small tips, of around R ¼ 1 nm
and considering H ¼ 10�20 J, interaction forces of the
order of Fmax ¼ �3:6� 10�12 N are generated, which is
hardly measurable with a common apparatus. In
contrast, we find a significantly quantifiable Fmax ¼
�2:6� 10�11 N for relatively large tips of R ¼ 100 nm

and the same H, which strongly reduces the scanning
resolution. Therefore, the resolution of AFM experiments
rises when using probes with small tip radius, but their size
is restricted by the minimum force measurable with an
AFM. The employment of our probe-sample interaction
model is suggested to obtain quantitative data from local
probe measurements of liquid surfaces. Whereas a wide
range ofH 2 ð10�19; 10�21Þ J is commonly employed, our
methodology allows us to estimate a more accurate value
for a given nanoscopic tip-liquid system, when meticulous
AFM measurements are performed and Fmax is available.
In addition, together with the estimation of the tip radius
[2], the minimum tip-liquid distance and its corresponding
deformation are obtained. Our prediction of H leads to
finding the optimal distance range for scanning D 2
½Dmin; 2Dmin�, needed to keep the interaction regimewithin
the attractive zone before the wetting phenomenon takes
control.
In this Letter, from a theoretical analysis, we have

established the necessary experimental conditions to im-
plement nanoprobe techniques when studying liquid inter-
faces. This work is a crucial step for imaging liquids and
measuring their properties with a nanometer resolution.
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