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When branching is suppressed, rapid cracks undergo a dynamic instability from a straight to an

oscillatory path at a critical velocity vc. In a systematic experimental study using a wide range of different

brittle materials, we first show how the opening profiles of straight cracks scale with the size ‘nl of the

nonlinear zone surrounding a crack’s tip. We then show, for all materials tested, that vc is both a fixed

fraction of the shear speed and, moreover, that the instability wavelength is proportional to ‘nl. These

findings directly verify recent theoretical predictions and suggest that the nonlinear zone is not passive,

but rather is closely linked to rapid crack instabilities.
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Since their discovery, a fundamental understanding of
the origin of rapid crack instabilities [1–5] has proven to be
very elusive. The dynamics of single straight cracks are
well described [6–8] by linear elastic fracture mechanics
(LEFM) [9,10]. This theoretical framework predicts sin-
gular crack tip fields and describes a crack’s dynamics as a
balance between the elastic energy flux into the tip region
and the energy dissipated at the tip. LEFM, however,
cannot explain rapid crack instabilities and accompanying
nontrivial crack patterns, without additional assumptions
or physical insights about the near-tip region where linear
elasticity breaks down.

There have been a number of notable attempts to describe
crack instabilities by supplementing or extending LEFM in
various ways. These include phase-field models [11–16],
cohesive-zone models [17–19], models based on the ‘‘prin-
ciple of local symmetry’’ [20–22], energy conservation
bounds on crack branching [23,24] and models based on
nonlinear constitutive behavior near the
crack tip [25,26]. Although many of these models are
qualitatively consistent with both experimental and numeri-
cal observations, decisive quantitative experiments that are
able to differentiate between them are lacking. Classically,
the near-tip region has been considered as a passive region
that both regularizes the singular fields predicted by LEFM
and accounts for the dissipative processes at the tip.
Understanding crack instabilities, however, may require
the introduction of fundamentally new physics in which
the near-tip region plays a more active role.

Here we focus on the oscillatory instability in rapid
brittle fracture in which a straight crack becomes unstable
to sinusoidal path oscillations [4]. The onset of these
oscillations was observed at a critical velocity vc of about
90% of the shear wave speed cs, when the microbranching
instability [1,2] was suppressed. This instability is particu-
larly intriguing since it involves a finite instability wave-
length at onset that is independent of either system
geometry or loading conditions. This suggests the

existence of an intrinsic scale that cannot exist in linear
elastic solutions for cracks, which are scale-free.
Recently, a theory describing this instability was pro-

posed [26]. This theory is based on the existence of a
dynamic nonlinear length scale ‘nl, where linear elasticity
breaks down and material nonlinearities become signifi-
cant due to the large deformation near a crack’s tip
[27–30]. The basic idea behind this approach is that in
the presence of a finite ‘nl, causality implies that the
singular LEFM fields lag behind the actual tip location
with a delay of �d / ‘nl. This led to a high-velocity oscil-
latory instability with the following properties: (i) the
scaled critical velocity for the onset of oscillations vc=cs
is material independent, and (ii) the oscillation wavelength
�osc is proportional to ‘nl.
In this Letter we investigate the rapid fracture of a

variety of different brittle gels, whose mechanical proper-
ties vary over a wide range. We first demonstrate that the
opening profiles of straight cracks collapse onto a single
velocity-dependent form, when scaled by the size of the
nonlinear elastic zone, as predicted by [29]. We then show
that the oscillatory instability is triggered in each material
at the same scaled value of vc=cs and, moreover, that the
instability wavelength indeed scales with ‘nl, confirming
the theoretical predictions of [26].
Our experiments were performed using polyacrylamide

gels which are transparent, homogeneous, brittle, incom-
pressible elastomers. The dynamics of rapid cracks in these
neo-Hookean materials are identical to those observed in
other brittle amorphous materials (e.g., glass, PMMA).
Because of the low elastic moduli of these soft materials,
the wave speeds and corresponding crack velocities are
nearly 3 orders of magnitude [31] lower than in conven-
tional materials. This enables us to slow down the fracture
process while obtaining detailed measurements of rapid
cracks at unprecedented scaled velocities.
We control the gels’ physical properties by varying their

chemical composition [32]. We varied the total monomer

PRL 108, 104303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 MARCH 2012

0031-9007=12=108(10)=104303(5) 104303-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.104303


concentration (by weight) between 14.2%–32.4%, cross-
linker concentration between 2.7%–4.6% and polymer ini-
tiators in the range 0.03%–0.06%. In what follows we will
label each gel by its shear modulus, � (33<�<
187 kPa) and fracture energy at the critical velocity,
�ðvcÞ (24< �ðvcÞ< 60 J=m2). � is defined as the amount
of energy dissipated per unit crack extension and sample
thickness. The details of these gel compositions are pro-
vided in [33]. Typical dimensions of the gels used were
(x� y� z) ð130� 130� 0:2Þ mm and ð200� 200�
0:2Þ mm, where x, y, and z are, respectively, the propaga-
tion, loading, and thickness directions.

Experiments were performed as in [4] by imposing
uniaxial tensile loading via constant displacement in the
vertical (y) direction. Once a desired strain � was reached,
a scalpel was used to initiate fracture at the sample’s edge,
midway between the vertical boundaries. The influence of
stress waves generated at crack initiation and reflected
back to the crack tip by the sample boundaries was negated
by selecting applied strain levels large enough to ensure
that all cracks reached the onset of the oscillatory insta-
bility before the arrival of any reflected waves. For experi-
mentally feasible system sizes, this entails strains � in the
range 6%–18%. The crack tip opening displacement
(CTOD) of the moving crack was measured with a high
speed camera focused on an (x� y) area of 60� 9:5�
19 mm with 1280� 200� 400 pixel resolution.
Successive photographs were taken at between
2490=15 000 frames=s with a 2 �s exposure time.
Multiple exposures were utilized, when needed. The mi-
crobranching instability was suppressed (as in [4]) by
setting the gel thickness to 160–220 �m. In all experi-
ments analyzed, no micro-branches occurred in regions
that could influence the instability onset. Post-fracture xy
profiles were measured via an optical scanner with 300dpi
resolution.

Let us now consider a simple straight crack moving at
velocity v under constant tensile loading, prior to any
instability. According to LEFM, the CTOD has a parabolic
shape whose curvature aðvÞ is inversely proportional to the
instantaneous value of �ðvÞ [9]. This characteristic para-
bolic form is indeed experimentally measured at points that
are at a distance not too close to the crack tip. Sufficiently
near the crack tip, regions of very high strain are encoun-
tered. The resulting nonlinear elastic effects shift the actual
crack tip by a distance � from the apex of the parabolic
form defined by LEFM [27]. The dissipative zone adjacent
to the tip is also contained within �. In gels, the dissipative
zone is significantly smaller than the size of the nonlinear
elastic deformation zone [28].

The strain levels imposed in our measurements suggest
that the CTOD predicted by LEFM should be calculated
with respect to the background strain �. To this end, we
consider the energy functional describing our incompress-
ible gels under plane stress conditions [34]

UðFÞ ¼ �

2
½FijFij þ detðFÞ�2 � 3�; (1)

where F ¼ r’ is the deformation gradient and x0 ¼ ’ðxÞ
is a mapping between a reference (undeformed) configu-
ration x and a deformed one x0. For our uniaxial loading we
have ’x ¼ ð1þ �Þ�1=2xþ ux and ’y ¼ ð1þ �Þyþ uy,

where u is the displacement field due to the presence of a
crack. Using the stress measure s ¼ @FUðFÞ, the momen-
tum balance equation reads r � s ¼ �@tt’, where � is the
mass density. The traction-free boundary conditions on the
crack faces take the form sxyðr; � ¼ ��Þ ¼ syyðr; � ¼
��Þ ¼ 0, where (r, �) is a polar coordinate systemmoving
with the crack tip and � ¼ 0 is the propagation direction.
Linearizing these equations with respect to u and solving
the resulting equations numerically near the tip of a crack
moving at a steady velocity v, the solution takes the
form [33]

uxðr; �;v; �Þ ¼ KIðv; �Þ
ffiffiffi

r
p

4�
ffiffiffiffiffiffiffi

2�
p �xð�;v; �Þ þ Txð�Þr cos�

�
;

uyðr; �;v; �Þ ¼ KIðv; �Þ
ffiffiffi

r
p

4�
ffiffiffiffiffiffiffi

2�
p �yð�;v; �Þ þ

Tyð�Þr sin�
�

; (2)

where KI is the stress intensity factor, T is a traction vector
known as the T stress and� is a universal angular function
[33]. In the limit � ! 0 the standard LEFM solution is
recovered [9]. Equation (2) can be used to relate the
parabolic crack tip curvature aðv; �Þ and the fracture en-
ergy �ðvÞ, yielding

�ðvÞ¼�

�

ð1þ�Þ�1=2þTxð�Þ
�

�

Aðv;�Þ
�2

yð�;v;�Þ
1

aðv;�Þ ; (3)

where Txð�Þ and Aðv; �Þ are given in [33].
The deviations of Eq. (3) from the LEFM predictions are

very small for low strains (� < 6%), justifying their omis-
sion in previous studies [27–30]. However, as � is in-
creased, significant corrections to the LEFM predictions
appear for high crack velocities. In Fig. 1 we compare
values of �ðvÞ derived from measured CTOD’s using
both Eq. (3) and the analogous LEFM relation. While, at
low velocities, the differences are insignificant, for v >
0:85cs the �ðvÞ curves diverge significantly. The LEFM
relation (blue shading in Fig. 1) yields both a large system-
atic variation of �ðvÞ for different � values and a substan-
tial decrease of � with v. The former contradicts the
expectation that �ðvÞ is a material-dependent function
whose value should not reflect the background strain.
Moreover, the sharp decrease in �ðvÞ at high velocities is
surprising. One would expect a nearly constant value of
�ðvÞ in this narrow range of velocities, as obtained in
independent measurements of �ðvÞ (using an ‘‘infinite
strip’’ geometry [7]) for a similar material (Fig. 1, inset).
The use of Eq. (3) both eliminates the apparent dependence
of � with � and indeed reveals a slow increase of � with v,
consistent with the direct measurements presented in the
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inset. We were able to significantly decrease the 2%–4%
experimental uncertainty in v=cs, by varying cs (within
experimental uncertainty) to minimize the variance of the
mean value of �ðvÞ over the range 0:85< v=cs < 0:9.
�ðvÞ, obtained by this procedure, is presented within the
red-shaded data in Fig. 1. The collapse of the data together
with the resulting slow increase of �ðvÞ with v as expected
from [7], justifies this procedure, which is used to deter-
mine �ðvÞ in what follows.

For each v=cs, Fig. 2(a) demonstrates that scaling
lengths by �=� collapses the CTOD’s of different materi-
als to a single function. LEFM predicts that this should
occur for the parabolic CTOD’s away from the crack tip. It
is not obvious, however, that data collapse should occur in
the near-tip region defined by �, as this is a wholly inde-
pendent regime. Data collapse with �=� in the weakly
nonlinear regime (i.e., cubic expansion of U in the metric
strain measure E ¼ 1

2 ðFTF� IÞ [33]) was predicted for

neo-Hookean materials [28,29], where second order elastic
coefficients are order �. (In analogous scaling for other
materials these coefficients may significantly differ from�
[33].) A perfect data collapse would indicate that this is the
only significant scale in the system. High-resolution mea-
surements of �ðvÞ, presented in Fig. 2(b) for 5 different
materials, provide a stringent test of this scaling. While the
widely spread raw data [Fig. 2(b), top] indeed undergo an
approximate collapse when scaled by �=�, the imperfect
collapse for small values of scaled � indicates that an
additional, much smaller, scale exists. We surmise that
this additional scale could be related to either the strongly
nonlinear elastic region or the dissipation zone [28]. We
now turn to the oscillatory instability. We consider the first

observable wavelength, �osc, which should correspond to
the linearly unstable wavelength in the region of linear
growth of the instability. As shown in Fig. 3, �osc is
strongly material-dependent, varying by over a factor of
2.5 in different materials [Fig. 3(b)]. In each material there
is a well-defined velocity vc for the onset of the instability.
As predicted by [26], Fig. 3(c) shows that vc, when scaled
by cs, has the nearly constant value of vc ¼ 0:9cs, in each
of the 6 materials studied.
What is the origin of the instability wavelength? Figure 3

confirms that �osc is not related to details of the experimen-
tal system. In experiments with identical conditions, �osc

varied widely with the material used. In [26], �osc was
predicted to be proportional to the size of the nonlinear
zone ‘nl. Here we use �ðv ¼ vcÞ to estimate ‘nl at the
critical velocity vc for different materials. The obvious
advantage of doing this is that �ðvÞ is directly measurable,
and hence the theoretical prediction of [26] can be recast as
a relation between two directly measurable quantities, �osc

and �ðv ¼ vcÞ. In Fig. 4 we plot �osc vs �ðv ¼ vcÞ for the 6
materials used. We indeed find that � is directly propor-
tional to�osc, as predicted in [26].Moreover, the constant of
proportionality between �osc and �ðv ¼ vcÞ in Fig. 4 is
consistent with the analysis of [26,33].
We note that the weakly nonlinear estimate of ‘nl / �=�

[29] is linearly related to �. In contrast to Fig. 4, however,
this linear relation involves an offset corresponding to

FIG. 2 (color online). (a) Top: Measurements of the CTOD for
5 different materials (legend below) at � ’ 0:08 and v ¼ 0:86cs.
(x0, y0) are the coordinates in the laboratory (deformed) frame, to
be distinguished from the reference (undeformed) frame (x, y).
Bottom: When scaled by �ðvÞ=�, these curves collapse to a
single function. Far from the tip at ðx0; y0Þ ¼ ð0; 0Þ the CTOD is
parabolic (dashed line), but strongly deviates from this form at a
scale �, defined as the distance from the apex of these parabola
to the crack tip. (b) Top: �ðv=csÞ for the 5 different materials in
(a). Bottom: approximate collapse of the �ðv=csÞ curves when
scaled by �ðvÞ=�.

FIG. 1 (color online). Comparison of the fracture energy, �ðvÞ,
calculated from (squares) CTOD measurements using the LEFM
solution [9] and (circles) using the extension of LEFM for finite
strain given by Eq. (3). The gel used has � ¼ 110 kPa. (inset)
Measurements of �ðvÞ obtained by velocity profiles in a strip
geometry with a more compliant (� ¼ 36 kPa) gel [7].
Uncertainties in cs were reduced (see text) using Eq. (3). v=cs
values for the circles reflect this (< 1%) correction, while the
squares do not.
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�100–300 �m (see [33]). This scale is also apparent in the
imperfect data collapse in Fig. 2(b), suggesting that �
includes length scales such as the strongly nonlinear con-
tributions to the nonlinear elastic zone and/or the scale of
the ‘‘dissipative zone’’ at the crack tip which are beyond the
perturbative estimate of Eq. (1) used in [29]. This offset is
consistent with previous experimental estimates of the size
of the strongly nonlinear and dissipative zones given in [28].

In conclusion, our results conclusively demonstrate that
the oscillatory instability of fast brittle cracks indeed in-
volves an intrinsic scale that is governed, in a large part, by
the nonlinear elastic zone surrounding the crack tip. The
size of this zone quantitatively agrees with the predictions

of [26]. These results indicate that the nonlinear (and
dissipative) zones surrounding the tip of a moving crack
are not ‘‘passive’’ objects that are simply ‘‘dragged along’’
by the crack tip. Instead, as suggested by [4,25,26], this
region may play an active role in destabilizing crack mo-
tion. The demonstration of this presented in this work is,
therefore, an important step in obtaining a fundamental
understanding of the origin of instabilities in dynamic
fracture. These ideas are as general as the singular behavior
that occurs at the tip of a moving crack. It is therefore
conceivable that dynamics of the near-tip zone could play
an important role in unraveling the physical mechanism
driving other instabilities of rapid cracks [1–5]. The effects
of crack instabilities are not simply academic; they are
both significant and easily visible at macroscopic scales.
Examples include limiting the mean propagation velocities
of rapid cracks and giving rise to significant increases in
fracture-related dissipation.
T. G. and J. F. acknowledge the support of the European

Research Council (grant 267256) and the Israel Science
Foundation (grant 57/07). E. B. acknowledges support
from the Harold Perlman Family Foundation and the
William Z. and Eda Bess Novick Young Scientist Fund.
We also thank Mr. Moshe Safran for contributions to the
data analysis.

[1] K. Ravi-Chandar and W.G. Knauss, Int. J. Fract. 26, 65
(1984).

[2] J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney,

Phys. Rev. Lett. 67, 457 (1991).
[3] R. D. Deegan, P. J. Petersan, M. Marder, and H. L.

Swinney, Phys. Rev. Lett. 88, 014304 (2001).
[4] A. Livne, O. Ben-David, and J. Fineberg, Phys. Rev. Lett.

98, 124301 (2007).
[5] J. Scheibert, C. Guerra, F. Célarié, D. Dalmas, and D.
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