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Using the boundary element method, we calculate the normal interfacial stiffness and constriction

resistance of two elastic bodies with randomly rough surfaces and varying fractal dimensions. The contact

stiffness as a function of the applied normal force can be approximated by a power law, with an exponent

varying from 0.51 to 0.77 for fractal dimensions varying from 2 to 3.
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The surface roughness has a large influence on many
physical phenomena such as friction, wear, sealing, adhe-
sion, and electrical as well as thermal contacts [1]. Bowden
and Tabor [2] were the first to realize the importance of the
roughness of the surfaces of bodies in contact. Because of
this roughness, the real contact area between the two
bodies is typically orders of magnitude smaller than the
apparent contact area. The works of Bowden and Tabor
triggered an entirely new line of theory for contact me-
chanics regarding rough surfaces in the 1950s and 1960s
with basic contributions by Archard [3] and Greenwood
and Williamson [4]. The main result of these examinations
was that the contact area between rough elastic surfaces is
approximately proportional to the normal force. In the past
years, the contact properties of bodies with rough surfaces
have been extensively studied [5–8], the main focus being
put on the determination of the real contact area for self-
affine surfaces with relevant fractal dimensions. It was
found that the contact area A is proportional to the normal
force FN and inversely proportional to the rms slope of the
surfacerh: A ¼ �FN=ðE�rhÞ, where � is near 2 andE� ¼
½ð1� �2

1Þ=E1 þ ð1� �2
2Þ=E2��1 denotes the effective elas-

tic modulus. E1, E2, �1, and �2 are the Young’s moduli and
Poisson’s ratios, respectively, of the contacting bodies.
Another important contact quantity, which is, however,
much less investigated, is the contact length:

~L ¼ 1

E�
@Fn

@d
; (1)

wherein d is the approach of two remote points within the
contacting bodies. The contact length can be roughly de-
fined as a sum of diameters of all contact regions (for
details, see [1]). It determines many practically important
properties, such as contact stiffness or electrical or thermal
conductivity. The quantities related to the contact length
are all connected with each other by exact analytical
relations. For example, the contact conductance � is line-

arly proportional to the incremental stiffness: k ¼ @Fn

@d ¼
E�ð�1 þ �2Þ�=2 [9], where �1 and �2 are the resistivities
of the contacting bodies. Thus, investigation of either

incremental stiffness or conductivity would suffice for
determining this whole class of properties.
Numerical determination of the contact stiffness is more

sophisticated than the calculation of the contact area, as the
saturation stiffness value corresponding to an ideal contact
is reached more quickly than an ideal ‘‘full material con-
tact’’ [1]. Recently, the contact stiffness was studied nu-
merically with the help of molecular dynamics [10] as well
as with the boundary element method and analytically in
the frame of Persson’s contact theory [11]. According to
the theory of Greenwood and Williamson [4], the contact
stiffness k is approximately proportional to the normal
force k � �FN=h, where h is the rms roughness and � a
constant of the order of unity. According to the theory of
Persson, an exact proportionality [12] exists between the
normal force and its derivative with respect to the mean
surface separation. Numerical simulations carried out in
Refs. [10,11] as well as experiments presented in Ref. [12]
seem to support this conclusion. Note that we investigate in
this Letter the total contact stiffness, while in Refs. [10,11]
the interfacial contact stiffness was studied. Although a
different definition of the contact stiffness is used in these
works, the results should be the same for small normal
forces, when the bulk deformation can be neglected.
Unfortunately, results for small normal forces were not
presented in Refs. [10,11]. Furthermore, in Ref. [10], simu-
lations partially have been done with the help of molecular
dynamics; thus, plastic deformation of surfaces cannot be
excluded. In the present Letter, we consider only a pure
elastic contact.
We calculated the normal stiffness of contact between

bodies with self-affine fractal surfaces. As a test, we re-
produced [13] the earlier results on the dependence of the
real contact area on the normal force [7] and investigated
the dependence of the contact stiffness on the normal force
as it was done recently in Refs. [10,11]. In contrast to
Ref. [10], however, we studied this dependence with the
boundary element method for a finite squarish indenter
over a wider range of normal forces. Lowering the normal
forces resulted in an essential nonlinearity in the stiffness.
Results for low to medium forces can be reproduced much
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better by a power-law dependence k / F�
N with � ranging

from 0.51 to 0.77, corresponding to a variation of fractal
dimension from 2 to 3.

We considered the normal contact between an elastic
solid having a randomly rough self-affine surface with a
flat rigid body. The surface topography of the elastic body
was characterized by its power spectrum C2DðqÞ. For self-
affine fractal surfaces, the spectral density has a power-law
dependency on the wave vector

C2DðqÞ ¼ const�
�
q

q0

��2ðHþ1Þ
; (2)

whereinH is the Hurst exponent, ranging from 0 to 1 [6]. It
is directly related to the fractal dimension of a surface
Df ¼ 3�H. The surface topography is calculated in the

two-dimensional case with the help of the power spectrum
according to

hð ~xÞ ¼ X
~q

B2Dð ~qÞ expfi½ ~q � ~xþ�ð ~qÞ�g (3)

with

B2Dð ~qÞ ¼ 2�

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2Dð ~qÞ

q
¼ �B2Dð� ~qÞ (4)

and the phases �ð ~qÞ ¼ ��ð� ~qÞ, which are randomly
distributed on the interval ½0; 2�Þ. Figure 1 shows a graph-
ical representation of typical surface shapes for different
values of Df. Rough surfaces were generated on a square

A0 with an equidistant discretization of 2049� 2049
points. We applied the boundary element method with an
iterative multilevel algorithm to obtain the pressure distri-
bution for a series of dimensionless normal forces. The
incremental stiffness k was calculated by evaluating the
differential quotient of force and indentation depth. All
values were obtained by an ensemble averaging over 60
surface realizations having the same power spectrum. At
complete contact, the stiffness is proportional to E� ffiffiffiffiffiffi

A0

p
. It

approaches a saturated value of ksat ¼ 1:1419E� ffiffiffiffiffiffi
A0

p
, cor-

responding to the theoretical value for a squarish indenter.
Thus, it is reasonable to define a dimensionless stiffness as
�ki ¼ kðdiÞ=ðE� ffiffiffiffiffiffi

A0

p Þ. In Fig. 2, the stiffness can be re-
garded as saturated in the first 3 configurations.

The whole range of calculated dependencies of the con-
tact stiffness on normal force for six fractal dimensions
(Df ¼ 2:0; 2:2; 2:4; 2:6; 2:8; 3:0) is shown in Fig. 3. For

small to medium forces, the logarithm of stiffness is very
accurately proportional to the logarithm of the normal
force. The stiffness is thus a power function of the normal
force �k ¼ const� �F�

N . The power � can be fitted as

� � 0:2567Df (5)

(see also Fig. 4). This result qualitatively differs from the
prediction k � �FN=h of the Greenwood-Williamson
model but corresponds much better to the results obtained
in the frame of method of reduction of dimensionality
[14,15] and reported in Ref. [16] (Chapter 9, p. 93) as
well as to experimental measurements of the contact stiff-
ness reported in Ref. [17].
Based on the power law, we searched for an analytical

approximation for the contact stiffness. Under the assump-
tion that the only parameters appearing in the stiffness-
force dependence are the elastic modulus E� as well the
rms roughness h and that it is a power-law function of
all arguments, the problem contains only the following
independent dimensionless variables: dimensionless
stiffness k=ðE� ffiffiffiffiffiffi

A0

p Þ, dimensionless force F=ðE�A0Þ, and

FIG. 1. Graphical representation of fractal surfaces having
different fractal dimensions. Darker colors denote higher peaks
in topography. Data have been scaled for optimal contrast in
each picture.

FIG. 2. Dependency of the dimensionless normal force on the
mean surface separation u for Df ¼ 2:8. Subplots show the real

contact area for a specific surface realization. Even though only a
fraction of the surface is in intimate contact in plots (a)–(c), the
saturated value of the normal stiffness is already reached. (See
Fig. 3 at corresponding normal force.)
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dimensionless rms roughness h=
ffiffiffiffiffiffi
A0

p
. The general form

of a power function connecting these variables is

k=ðE� ffiffiffiffiffiffi
A0

p Þ ¼ �ð F
E�A0

Þ�ðh2A0
Þ	, where � is a dimensionless

constant. This dependence must possess the following
strict scaling properties. If the vertical scale of the surface
inhomogeneity is multiplied by a certain factor, then the
contact configuration does not change, provided that the
force F and the indentation depth uz are both multiplied by
this factor. This means that k does not change and the
relation �þ 2	 ¼ 0 is valid; it follows that 	 ¼ ��=2.
In addition, at a given contact configuration, both the force
and the stiffness must be strictly proportional to the effec-
tive elastic modulus E�, which is already fulfilled by the
above equation. The only possible general power depen-
dence of the contact stiffness on force obeying these scal-
ing relations is

k

E� ffiffiffiffiffiffi
A0

p ¼ �

�
F

E�h
ffiffiffiffiffiffi
A0

p
�
�
: (6)

The dependence of the coefficient � on the fractal di-
mension can be approximated by � ¼ �Df=10. Thus, we

finally find the following approximation for the stiffness:

k

E� ffiffiffiffiffiffi
A0

p ¼ �Df

10

�
F

E�h
ffiffiffiffiffiffi
A0

p
�
0:2567Df

: (7)

To prove this relation, the value of ~F ¼ f½10=ð�DfÞ��
½k=ðE� ffiffiffiffiffiffi

A0

p Þ�g1=ð0:2567DfÞ is plotted against the dimension-
less normal force F=ðE�h

ffiffiffiffiffiffi
A0

p Þ in Fig. 5. The data for all
forces and all fractal dimensions collapse to one master
curve. Of course, these results are valid only for pure
elastic bodies. In real contacts, on increasing the load
over wider range of values, one can expect plastic defor-
mations to come into play.
Using the exact relation between the constriction con-

ductance � and the incremental stiffness of a contact of
two bodies [9], we can straightforwardly write down an
expression for the contact conductance of bodies having
rough surfaces and resistivities �1 and �2:

� ¼ �Df

ffiffiffiffiffiffi
A0

p
5ð�1 þ �2Þ

�
F

E�h
ffiffiffiffiffiffi
A0

p
�
0:2567Df

: (8)

In conclusion, the boundary element method was used to
study the normal stiffness of elastic bodies with self-affine
randomly rough surfaces with fractal dimensions ranging
from 2 to 3. As a test, we reproduced the linear dependence
of the contact area on the normal force predicted by
Persson’s theory but obtained a nonlinear behavior of
the incremental normal stiffness. This happens to be a
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FIG. 4. Dependence of power � in Eq. (6) on the fractal
dimension of a surface. The dashed line corresponds to the
chosen approximation � � 0:2567Df.
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FIG. 5. A plot of ~F ¼ f½10=ð�DfÞ�½k=ðE� ffiffiffiffiffiffi
A0

p Þ�g1=ð0:2567DfÞ
shows that the valid range for Eq. (7) comprises 4 orders of
magnitude in dimensionless F with the chosen resolution of
2049� 2049. Numerical limitations prevented us from inves-
tigating smaller normal forces, but we believe the power law to
correctly describe the asymptotical behavior as well [13]. For
very high normal forces, Eq. (7) no longer holds due to the
saturation of the normal stiffness.
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FIG. 3. Dependencies of the dimensionless normal stiffness
on the dimensionless normal force. Curves are shown for
Df ¼ f2:0; 2:2; 2:4; 2:6; 2:8; 3:0g. The dashed line represents

the theoretical value for the saturated stiffness of a squarish
indenter �ksat ¼ 1:1419. Below the saturation, a power-law de-
pendence is observed.
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power-law dependence of the normal force with the power
ranging from 0.51 for a fractal dimension ofDf ¼ 2 to 0.77

for a fractal dimension of Df ¼ 3. Furthermore, it has

powerlike dependencies on rms roughness, elastic modu-
lus, and the nominal area of contact. We have found simple
analytical approximations for contact stiffness and contact
conductance, which are valid over more than 4 orders of
magnitude of normal force.
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