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We calculate the full spectrum of D-wave states in the � system in lattice QCD for the first time, by

using an improved version of nonrelativistic QCD on coarse and fine ‘‘second-generation’’ gluon field

configurations from the MILC Collaboration that include the effect of up, down, strange, and charm

quarks in the sea. By taking the 2S-1S splitting to set the lattice spacing, we determine the 3D2-1
�S splitting

to 2.3% and find agreement with experiment. Our prediction of the fine structure relative to the 3D2 gives

the 3D3 at 10.181(5) GeV and the 3D1 at 10.147(6) GeV. We also discuss the overlap of 3D1 operators

with 3S1 states.
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Introduction.—The spectrum of b �b states has provided a
very important testing ground for strong interaction phys-
ics because of the number of radial and orbital excitations
that are ‘‘gold-plated,’’ i.e., well below the threshold for
decay to B mesons. The recent discovery of the �bð1SÞ [1]
and hbð1PÞ and hbð2PÞ mesons [2] filled in important gaps
in the spin-singlet states. The mass of the �b meson had
previously been predicted by lattice QCD [3], and the hb
meson masses were widely expected, and found, to be very
close to the spin average of their associated spin-triplet
states.

The key missing gold-plated mesons are now the �ð1DÞ
states. These are very difficult to find experimentally,
although the 3D2 has been seen in radiative decay from
the �ð3SÞ [4]. Masses of the D-wave states have been
predicted in potential model calculations (see, for example,
[5,6]), but it is hard to quantify the errors in these predic-
tions except by using different forms for the potentials.

In lattice QCD, the starting point is QCD itself. The
difficulties with the D-wave states then stem from the
signal to noise ratio; the signal falls exponentially in lattice
time with the D-wave mass, but the noise falls with the
smaller ground-state S-wave mass. Very large samples of
meson correlators on full QCD gluon field configurations
are then needed to obtain a reliable signal. Here we give the
first results from lattice QCD that are able to distinguish
the fine structure of D-wave states.

Lattice calculation.—We use ‘‘second-generation’’
gluon field configurations recently generated by the
MILC Collaboration [7]. These have a gluon action fully
improved through �sa

2 [8] and include the effect of u, d, s,
and c quarks in the sea using the highly improved stag-
gered quark formalism [9]. The u and d quarks have the
same mass ml, so the configurations are denoted as nf ¼
2þ 1þ 1. We use three ensembles to give two values of
the lattice spacing and two values ofml. The parameters of

the ensembles are given in Table I; we label them as 3, 4,
and 5 from Ref. [10], in which we mapped out the S- and
P-wave bottomonium spectrum and determined the lattice
spacing from the � (2S-1S) splitting.
We calculate b quark propagators on these configura-

tions by using an improved lattice discretization of non-
relativistic QCD (NRQCD). NRQCD is an expansion in
powers of the heavy quark velocity and therefore good for
b quarks since v2=c2 � 0:1 inside their bound states. The
Hamiltonian includes all terms through Oðv4Þ [10]:

aH¼� �ð2Þ

2amb

�c1
ð�ð2ÞÞ2
8ðambÞ3

þc2
i

8ðambÞ2
ðr � ~E� ~E �rÞ

�c3
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� � ð~r� ~E� ~E� ~rÞ�c4
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Here r is the symmetric lattice derivative, and �ðnÞ is the
lattice discretization of the continuum

P
iD

n
i .

~E and ~B are
the chromoelectric and chromomagnetic fields, respec-
tively. amb is the bare b quark mass, which is tuned by
determination on the lattice of the spin average of ground-
state� and�b meson masses. This was done in Ref. [10] to
give the values used here, quoted in Table II.
The v4 terms in �H have coefficients ci whose values

are fixed frommatching lattice NRQCD to full QCD, either
perturbatively or nonperturbatively. Here we use coeffi-
cients for c1, c5, and c6 that include Oð�sÞ corrections,
as described in Ref. [10]. The coefficients c3 and c4 of the
spin-dependent v4 terms have been tuned from a study of
the fine structure of the �bð1PÞ states. We find c3 ¼ 1:0
with an error of 0.1. c4 is significantly larger. Here we use
c4 ¼ 1:25 on the coarse lattices and 1.10 on the fine
lattices. These agreewithin 0.1 both with the value required
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to give P-wave fine structure, in agreement with experi-
ment, and with the Oð�sÞ improved result [10].

To make meson correlators for D-wave states, we use a
quark propagator made from either a local or a smeared
source which has appropriate derivatives applied to it to
generate a D ‘‘wave function.’’ This propagator is then
combined with a local propagator and the same derivatives
and smearings applied at the sink to create a 2� 2 matrix
of correlators for each D-wave state. The complete set of
combinations of spin matrices and derivatives needed is
given in Ref. [11]. Note that the spin-2 and spin-3 repre-
sentations split into irreducible representations of the lat-
tice rotational group fA1; A2; E; T1; T2g, which must be
considered independently since their masses can differ by
discretization errors. Very high statistics is required—we
have typically 32 000 correlators for every source operator
per ensemble, using multiple time sources per configura-
tion. The time sources are binned over for analysis.

Bayesian fitting [12] is used to extract the spectrum from
the correlators by using the fit function:

Gmesonðnsc; nsk; tÞ ¼
Xnexp
k¼1

aðnsc; kÞa�ðnsk; kÞe�Ekt: (2)

Ek is the energy of the (k� 1)th radial excitation, and
aðn; kÞ label the amplitudes depending on source and
sink smearing. We fit all theD-wave states together, taking
the 3D2E state as the reference state, with a prior of width
0.1 on its ground-state energy. Relative to that, we take
prior value 0� 40 MeV on the ground-state energy of the
other states. We take priors 0:5� 0:5 GeV on radial exci-
tation energies and 0:1� 1:0 on amplitudes. We fit corre-
lators from time t=a ¼ 2 to 12 except for the local-local
correlators which we take from t=a ¼ 9 to 12.
Results.—The results from our fits for each D-wave

lattice representation on each ensemble are given in
Table II. We use nexp ¼ 3 on sets 3 and 4 and nexp ¼ 4

on set 5 since these have the highest posterior probability
[12]; values and errors have stabilized at this point and
�2=d:o:f: < 1. We also give the ratio RD ¼ ð1 3D2-1

�SÞ=
ð2 3S1-1

3S1Þ, where 1 �S is the spin average of � and �b

energies from Ref. [10] and 1 3D2 is the dimension-
weighted average of the lattice 3D2E and 3D2T2

results.

RD is plotted along with similarly defined RS and RP

from Ref. [10] in Fig. 1. To obtain a physical result for RD,
we fit to the same form used in Ref. [10] for RS and
RP, allowing for lattice spacing and sea quark mass
dependence:

TABLE I. Details of the MILC gluon field ensembles used in
this Letter. a is the lattice spacing in femtometers determined
from the � (2S-1S) splitting, and L=a and T=a give the lattice
size. aml, ams, and amc are the sea quark masses in lattice units.
Ensembles 3 and 4 are denoted ‘‘coarse’’ and 5 ‘‘fine.’’

Set a (fm) aml ams amc L=a� T=a

3 0.1219(9) 0.0102 0.0509 0.635 24� 64

4 0.1195(10) 0.005 07 0.0507 0.628 32� 64

5 0.0884(6) 0.0074 0.037 0.440 32� 96

TABLE II. Fitted D-wave energies on each ensemble. Errors
are from statistics and fitting only. c3 ¼ 1:0 on all ensembles;
c4 ¼ 1:25 on sets 3 and 4 and 1.10 on set 5. a�ðxÞ ¼ aEðxÞ �
aEð3 �DÞ. RX and �X are defined in the text. The A2 irrep on set 5
is fit separately and not included in the splittings.

Set 3 Set 4 Set 5

amb ¼ 2:66 amb ¼ 2:62 amb ¼ 1:91

aEð1 1D2EÞ 0.705(10) 0.694(12) 0.594(5)

aEð1 1D2T2
Þ 0.711(8) 0.693(10) 0.589(3)

aEð1 3D1T1
Þ 0.695(7) 0.680(10) 0.575(8)

aEð1 3D2EÞ 0.698(10) 0.692(10) 0.588(4)

aEð1 3D2T2
Þ 0.702(8) 0.691(10) 0.589(4)

aEð1 3D3A2
Þ 0.707(10) 0.704(10) 0.597(4)

aEð1 3D3T1
Þ 0.715(7) 0.705(8) 0.596(4)

aEð1 3D3T2
Þ 0.714(7) 0.696(9) 0.594(3)

a�ð1 1D2Þ 0.0029(31) 0.0004(37) 0.0027(27)

a�ð1 3D1Þ �0:0104ð34Þ �0:0137ð44Þ �0:0137ð62Þ
a�ð1 3D2Þ �0:0047ð23Þ �0:0021ð21Þ 0.0001(20)

a�ð1 3D3Þ 0.0078(22) 0.0074(27) 0.0069(20)

RD 1.318(23) 1.303(26) 1.309(16)

a�L�S 0.0038(11) 0.0040(13) 0.0037(13)

a�Sij �0:0005ð9Þ 0.0009(9) 0.0016(15)

RL�S 0.44(13) 0.49(17) 0.60(21)

RSij �0:26ð52Þ 0.53(50) 1.1(1.0)

a2 (fm)
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FIG. 1 (color online). Results for the ratio of the 13D2-1S
splitting to the 2S-1S splitting in the � system plotted against
the square of the lattice spacing determined from the 2S-1S
splitting. Other ratios from Ref. [10] are shown for comparison.
The gray shaded bands give the physical result obtained from a
fit to the data as described in the text and with the full error of
Table III. The black open circles slightly offset from a ¼ 0 are
from experiment [14].
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R ¼ Rphys

�
1þ 2bl�xl½1þ clða�Þ2�

þ X
j¼1;2

cjða�Þ2j½1þ cjb�xm þ cjbbð�xmÞ2Þ �
�
: (3)

Here �xl is ðaml=amsÞ � ðml=msÞphys for each ensemble.

ðml=msÞphys is taken from lattice QCD as 27.2 (3) [13].

�xm ¼ ðamb � 2:65Þ=1:5 allows for amb effects from
NRQCD in the discretization errors over our range of a
values. �, taken as 500 MeV, sets the scale for physical a
dependence. Fit priors are as in Ref. [10]: 1.0 (0.5) on
Rphys; 0.0 (0.3) on a2 terms; 0.0 (1.0) on higher order in a;

0.0 (0.015) on bl. The physical result we obtain for RD is
1.307 (30), after adding an additional NRQCD systematic
error for missing v6 terms [10]. This is to be compared to
the experimental value of 1.280 (3). A complete error
budget for RD is given in Table III.

In Fig. 2, we plot the masses of all the lattice represen-
tations relative to the spin average of all 1 3D states for
coarse set 4, by using the 2S-1S splitting to set the scale
(Table I). We see that the lattice representations for each
spin agree well with each other within our sizable statisti-
cal errors. The hyperfine splitting between the 1D2 and the
spin average of 3D states is expected to be very small,
following results for P-wave states. We find it to be zero to
within 10 MeV.

Figure 3 shows the results from all three sets, using a
dimension-weighted average of results, including the cor-
relations from the fit, for the different lattice representa-

tions for the 3D3 and ð1;3ÞD2. Results are consistent

between the fine and coarse sets and between different
sea light quark masses for the two coarse sets.

To arrive at a final result for D-wave fine structure, we
study combinations of 3D spin splittings that are sensitive
either to an L � S or to a tensor Sij interaction (S � S takes

the same value for all 3D states). Writing

MJ ¼ �Mð3DÞ þ�D
L�ShL � Si þ �D

Sij
hSiji (4)

gives

�D
L�S ¼ ð14M3 � 5M2 � 9M1Þ=60;
�D

Sij
¼ �7ð2M3 � 5M2 þ 3M1Þ=120: (5)

Table II gives our results for these splittings. In Fig. 4,
we plot ratios to the equivalent 3P splitting combinations:
RX ¼ �D

X=�
P
X with �P

L�S ¼ ð5M2 � 3M1 � 2M0Þ=12 and

�P
Sij

¼ �5ðM2 � 3M1 þ 2M0Þ=72. Values for�P for these

ensembles are given in Ref. [10] (without factors of 1=12
and �5=72). The experimental values are �P

L�S ¼
13:65ð27Þ MeV and �P

Sij
¼ 3:29ð9Þ MeV [14]. The advan-

tage of using these combinations is that they depend purely
on one of the spin-dependent coefficients of the NRQCD
action. On set 5 we did not use exactly the same values for
c3 and c4 in our study of P and D waves. However, we can
correct for this in Fig. 4, since �Sij / c24 and �L�S / c3.

TABLE III. Complete error budget for RD in percent. The final
error takes account of shifts to the meson masses from effects not
included in our lattice QCD calculation. This is discussed for RS

and RP in Ref. [10], where it is also shown that finite volume and
mb tuning errors are negligible.

RD

Statistics and fitting 1.4

a dependence 1.4

ml dependence 0.5

NRQCD amb dependence 0.1

NRQCD systematics 1.0

Electromagnetism and �b annihilation 0.2

Total 2.3%
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FIG. 2 (color online). Results for the separate irreducible
representations of the lattice rotation group making up each
continuum D-wave state on coarse set 4. Statistical errors vary
with the dimension of the representation. For the 3D3, we have

dimensions A2, 1; T1, 3; T2, 3.
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FIG. 3 (color online). D-wave masses plotted relative to the
3D spin average for all sets using the 2S-1S splitting to set the
scale. The red shaded bands show our final results using ratios of
combinations of splittings to those of P-wave states as described
in the text.
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Once this slight adjustment is done, the dependence on c3;4
cancels between P and D states, and so errors from the
uncertainty in these coefficients are much reduced.

We fit the fine-structure R values to the same form used
earlier in Eq. (4) to extract physical results:

RL�S ¼ 0:49 ð11Þ; RSij ¼ 0:26 ð35Þ: (6)

We have included an additional systematic error of 10% to
allow for missing v6 terms from our NRQCD action, but
the lattice statistical error dominates. We then combine the
R values with experimental results from 1P levels to give
the following 3D splittings:

3D3 �3 D1 ¼ 34ð8Þ MeV;

3D3 � 3D2 ¼ 18ð5Þ MeV;

3D2 �3 D1 ¼ 17ð6Þ MeV:

(7)

Our fine-structure splittings are somewhat larger than
typical results from potential models [5,6], where the
3D3 � 3D1 splitting lies in the range 10–20 MeV. This

can be traced to a larger value for RL�S than is obtained,
for example, in Ref. [5], based on specific forms for the
spin-dependent potentials.

One issue that we have neglected above is that the 3D1

state has JPC ¼ 1�� in common with 3S1 states. On the
lattice, in principle, any operator with 1�� quantum num-
bers will be able to create all 1�� states. In practice, the
amplitude for 3S1 states to be created by the operators that
we use for the 3D1 is very small and vice versa. We
illustrate that in Fig. 5, where we show correlators from
set 3 that use a local 3S1 or

3D1 operator at source and sink
compared to the cross correlator that has a local 3S1
operator at the source and 3D1 at sink or vice versa. The
cross correlator is much smaller in magnitude than either of
the diagonal correlators at small t values. The exponential
falloff (as seen in the slope of the log plot) of the cross
correlator matches that of the 3S1 correlator at large times,

where the 3D1 correlator falloff is dominated by that of the
heavier 3D1 state. If we fit the complete set of 3S1 and

3D1

correlators together, including the local cross correlators of
Fig. 5, we obtain results in agreement with our separate fits
for 3S1 (in Ref. [10]) and 3D1 masses. We also find, for
example, that the amplitude að3D1;local;�Þ from Eq. (2) is

0.0052(1) times that of að3S1;local;�Þ.
Conclusions.—We give the first full lattice QCD results

for the D-wave states of bottomonium including the fine
structure. We obtain a mass of 10.179(17) GeV for the
1 3D2 to be compared with 10.1637(14) GeV from experi-
ment [14]. Using the experimental result for the 1 3D2

mass, we predict masses of 10.181(5) GeV for the 1 3D3,

10.147(6) GeV for the 1 3D1, and 10.169(10) GeV for
the 1D2.
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