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We present a perturbative QCD factorization formalism for the production of heavy quarkonia of large

transverse momentum pT at collider energies, which includes both the leading-power (LP) and next-to-

leading-power (NLP) contributions to the cross section in them2
Q=p

2
T expansion for heavy quark massmQ.

We estimate fragmentation functions in the nonrelativistic QCD formalism and reproduce the bulk of the

large enhancement found in explicit next-to-leading-order calculations in the color-singlet model. Heavy

quarkonia produced from NLP channels prefer longitudinal polarization.
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Introduction.—More than 35 years after the discovery of
the J=c [1], the production of heavy quarkonia remains a
key subject in strong interaction physics [2]. The inclusive
production of pairs of charm or bottom quarks, with masses
mQ � �QCD, is an essentially perturbative process, while

the subsequent evolution of the pair into a physical quark-
onium is nonperturbative. Different treatments of the trans-
formation from heavy quark pair to bound quarkonium are
given in various formalisms, most notably, the color-singlet
model (CSM), the color evaporation model, and nonrela-
tivistic QCD (NRQCD). The current status of theory and
experiment has been summarized very recently in Ref. [2].

For the NRQCD formalism [3,4], small, color-octet
production matrix elements can provide good fits to
high-pT-inclusive hadron collider cross sections for J=c
and �, but a complete description remains elusive.
Polarization, in particular, remains a challenge, along
with the surprisingly high rate of associated production
in electron-positron annihilation [2]. Although plausible
arguments for the use of NRQCD at leading power (p�4

T )
have been around since the beginning of the formalism [4],
issues of gauge invariance and infrared cancellation are
still not completely settled [5,6]. Meanwhile, large next-to-
leading-order (NLO) and potentially large next-to-next-to-
leading-order (NNLO) corrections to high-pT cross sec-
tions [7] in the CSM have attracted attention. The size of
these color-singlet cross sections seems to upset long-held
expectations for gluon fragmentation dominance through a
color-octet mechanism, and indeed, they appear in dia-
grams that fall off like p�6

T in d�=dp2
T , compared to the

leading, p�4
T behavior associated with gluon fragmenta-

tion. These developments suggest that we must widen the
formalism for quarkonium production beyond leading
power.

In this Letter, we emphasize the expansion of the pro-
duction rate of the heavy quark pairs first in the large-scale
pT and then in the coupling constant �s. We present a
perturbative QCD (pQCD) factorization formalism,

accurate to the first nonleading power in m2
Q=p

2
T , that

incorporates both leading-power gluon fragmentation and
direct production of heavy quarks at short distances with
subsequent fragmentation, as illustrated in Fig. 1 [8]. These
figures are shown in cut diagram notation, in which the
amplitude and complex conjugate are combined into a
forward scattering diagram in which the final state is
identified by a vertical line. When pT � mQ, the rate to

produce a gluon (or, in general, a single parton) at distance
scale 1=pT , which fragments into a heavy quark pair and
then into a physical quarkonium, is characterized by a p�4

T

behavior. We refer to this as the leading-power (LP) con-
tribution. The perturbative production of a collinear heavy
quark pair directly at the short-distance scale 1=pT is sup-
pressed by 1=p2

T relative to the production rate of a single
parton at the same pT . We therefore refer to it as a next-to-
leading-power (NLP) contribution. As we will see below,
however, the probability for a such heavy quark pair to
evolve into a heavy quarkonium is naturally enhanced,
compared to that of a single parton. This can promote the
NLP channel to phenomenological interest, despite its
suppression by two powers of pT .
The physical heavy quarkonium is likely formed long

after the heavy quark pair was produced [9]. Both the LP
and NLP production channels in Fig. 1 can therefore be
considered as fragmentation contributions [2]. Similar to
factorization at LP [5], the NLP contribution to the
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FIG. 1. J=c production through a single parton (a gluon)
fragmentation (left) and fragmentation of a heavy quark pair
(right).
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production rate is factorized into perturbatively calculable
short-distance coefficient functions for producing the
heavy quark pair convoluted with nonperturbative but uni-
versal long-distance fragmentation functions for the pair to
become a heavy quarkonium [8]. The universality of the
fragmentation functions can in principle be tested when we
compare the data of heavy quarkonium production from
processes with different short-distance coefficients. As a
consequence of this perturbative factorization, the short-
distance coefficient functions at both the LP and NLP
capture the dynamics at the distance scale 1=pT and are
insensitive to the details of the produced heavy quark-
onium states.

Factorization formalism.—For the production of a heavy
quarkonium state H of momentum p, AðP1Þ þ BðP2Þ !
HðpÞ þ X, the leading contribution from the channels in
Fig. 1 can be summarized in an extended factorization
formula [8,10], given schematically by

d�AþB!HþXðpÞ
� X

f

d�̂AþB!fþXðpf ¼ p=zÞ �DH=fðz; mQÞ

þ X
½Q �Qð�Þ�

d�̂AþB!½Q �Qð�Þ�þXðpð1� �Þ=2z;

pð1� � 0Þ=2zÞ �DH=½Q �Qð�Þ�ðz; �; � 0; mQÞ; (1)

where the factorization scale dependence is suppressed.
The first (second) term on the right-hand side gives the
contribution of LP (NLP) in mQ=pT . In the first term,

d�̂AþB!fþXðpfÞ is the cross section to produce an on-shell
parton of flavor f at short distances, which contains all of
the information about the incoming state and includes
convolutions with parton distributions when A or B is a
hadron. The sum over f runs over all parton flavors, and
DH=fðz;mQÞ is the fragmentation function for a heavy

quarkonium state H from parton f with momentum
fraction z [5]. ForH, a J=c , or another heavy quarkonium,
the dominant channel at hadron colliders is gluon fragmen-
tation, f ¼ g. The second term on the right-hand
side in Eq. (1) is suppressed by p�2

T relative to the
first, and the quark-pair fragmentation function,
DH=½Q �Qð�Þ�ðz; �; � 0; mQÞ, has units of mass squared,

which are compensated by large invariants from the
hard-scattering function, d�̂AþB!½Q �Qð�Þ�þXðpð1� �Þ=2z;
pð1� � 0Þ=2zÞ, which describes production of an on-shell,
collinear heavy quark pair. The momentum fractions z, � ,
and � 0 are defined as

pþ
Q ¼ pþ 1þ �

2z
; pþ

�Q
¼ pþ 1� �

2z
;

p0þ
Q ¼ pþ 1þ � 0

2z
; p0þ

�Q
¼ pþ 1� � 0

2z
: (2)

By analogy to the single-parton case, z measures the frac-
tional momentum of the pair carried by the observed

quarkonium in this leading region, which is the same on
both sides of the cut in Fig. 1. Parameters � and � 0 char-
acterize the sharing of the pair’s momentum between the
heavy quark and antiquark on either side of the cut in the
figure. In principle, these need not be the same. The � in
Eq. (1) represents the convolution over the partons’ mo-
mentum fractions [10].
The predictive power of the factorization formula in

Eq. (1) relies on the perturbative calculation of the short-
distance hard parts and the universality of the fragmenta-
tion functions. Like all pQCD factorization approaches
[11], the predictions can be systematically improved with
higher-order perturbative calculations of partonic hard
parts in powers of �s and the evolution of the fragmenta-
tion functions. In Eq. (1), the perturbative hard parts at both
the LP and NLP capture the QCD dynamics at a distance
scale of 1=pT , are independent of heavy quark mass, and
are the same for the production of all heavy quarkonium
states. For the LP, the hard parts are effectively the same as
those for the inclusive production of any single hadron at
high pT and are available to both leading order (LO) and
NLO in �s [12].
For the hard parts at NLP, we only need to calculate the

rate to produce a heavy quark pair with zero relative
transverse momentum, since the effect of relative trans-
verse momentum will be further suppressed in 1=pT . The
hard parts can be perturbatively calculated order-by-order
in powers of �s by applying the factorization formula in
Eq. (1) to the production of an asymptotic state of a heavy
quark pair [Q �Qð�Þ] of momentum p with various spin and
color quantum numbers. For example, the hard part for the
subprocess, qþ �q ! ½Q �Qð�Þ� þ g, can be derived by ap-
plying Eq. (1) to heavy pair production in quark-antiquark
scattering,

d�̂ð3Þ
qþ �q!½Q �Qð�Þ�þg

ðpÞ
¼ d�ð3Þ

qþ �q!½Q �Qð�Þ�þg
ðpÞ � d�̂ð2Þ

qþ �q!gþgðpg ¼ p=zÞ
�Dð1Þ

½Q �Qð�Þ�=gðz;mQÞ; (3)

where the superscript ‘‘ðnÞ’’ indicates the order in �s. The
first term on the right of Eq. (3) is the differential cross

P

FIG. 2. Sample Feynman diagrams for the qþ �q!½Q �Qð�Þ�ðpÞ
þg subprocess. The diagram in (a) contributes to the short-
distance coefficient at NLP, while the diagram in (b) contributes
to both the LP and NLP hard parts. The cut diagram in (c) gives
the LO gluon to the heavy quark pair fragmentation function.
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section for the subprocess given by the diagrams in
Figs. 2(a) and 2(b) plus three more diagrams. When pT �
mQ, the square of diagram (a) clearly contributes to the

NLP, while the square of the diagram in (b) contributes to
both LP and NLP. We note that the interference between
the two contributes only to NLP. The second term in Eq. (3)
exactly removes the LP piece of this subprocess, where

d�̂ð2Þ
qþ �q!gþgðpgÞ is the LO differential cross section for qþ

�q ! gðpgÞ þ g and Dð1Þ
½Q �Qð�Þ�=gðz;mQÞ is the LO fragmen-

tation function given by the (cut) diagram in Fig. 2(c).
Since the second term on the right of Eq. (3) removes a
power mass singularity�1=m2

Q, it is important to keep the

heavy quark mass when evaluating partonic diagrams and

to set mQ ! 0 (only) after carrying out the subtraction

[10].
In Eq. (1), the single-parton fragmentation functions

DH=fðz; mQÞ are defined in Ref. [5]. The operator definition
forDH=½Q �Qð�Þ�ðz; �; � 0; mQÞ depends on �, which represents
the pair’s color and spin. For the heavy quark pair moving
in the ‘‘þz’’ direction with light-cone momentum compo-
nents, p� ¼ ½pþ; ð2mQÞ2=2pþ; 0?�, there are singlet (1)

and octet (8) color states and four spin states described by
relativistic Dirac spin projection operators: �þ�5=4p

þ,
�þ=4pþ, and �þ�i=4pþ, with i ¼ 1; 2, for effective axial
vector (a), vector (v), and tensor (t) ‘‘currents,’’ respec-
tively [10]. As an example, the operator definition of the
axial vector-octet fragmentation function can be written as

DH=½Q �Qða8Þ�ðz; �; � 0Þ ¼
X
X

Z pþdy�

2�
e�iðpþ=zÞy� Z pþdy�1 p

þdy�2
ð2�Þ2 eiðpþ=2zÞð1��Þy�

1 e�iðpþ=2zÞð1�� 0Þy�
2

� 4

ðN2 � 1Þ h0jc ið0Þ�
þ�5

4pþ ðtaÞij �c jðy�2 ÞjHðpþÞXihHðpþÞXjc lðy� þ y�1 Þ
�þ�5

4pþ ðtaÞlk �c kðy�Þj0i;
(4)

where we have suppressed dependence on a factorization
scale. We also suppress gauge links along the minus light
cone, inserted between repeated color indices, which pro-
vide a gauge-invariant definition of the operator [10]. The
links are in adjoint representation for index a and funda-
mental representation for i, j, l, and k. (We note that the
color matrices ta may be taken at any points along the light
cone.) Overall, the pair fragmentation functions are given
by matrix elements of nonlocal operators, and the form is
very similar to operator definitions of single-parton frag-
mentation functions, simply replacing the parton field by
the product of quark fields. They are also reminiscent of
hadronic wave functions that connect multiple partons to
the hard scattering in the factorized expressions for elastic
amplitudes [13].

Similar to the single-parton fragmentation functions,
heavy quark pair fragmentation functions like the one
defined in Eq. (4) are nonperturbative but universal. They
are boost-invariant and require renormalization. They thus
evolve in the usual sense and depend upon a factorization
scale, chosen to match the short-distance scale of the
problem. It is natural to think of the choice of factorization
scale as the same for NLP as for LP, and, in general, a
change of scale could mix them. This leads to a closed set
of general evolution equations for both LP and NLP
fragmentation functions, which will be addressed else-
where [10].

We note that there are further additive corrections at the
power of 1=p2

T , such as those involving twist-4 parton
distributions or twist-4 light-parton fragmentation func-
tions. These corrections, however, can be considered small,
since they do not introduce natural enhancements that scale

with mQ in the probability to form a quarkonium to com-

pensate for the suppression of 1=p2
T .

Cross section and polarization.—It is the fragmentation
functions that determine the absolute normalization of
perturbative calculations using the factorization formula
in Eq. (1), as well as the differences in the production rate
between various quarkonium states and their polarizations.
Since only pairs with small relative momentum are likely
to form bound quarkonia, we may apply the basic NRQCD
factorization hypothesis for heavy quarkonium production
to these fragmentation functions to reduce the unknown
functions to a few universal constants in the form of
NRQCD matrix elements,

DH=fðz; mQ;�Þ
¼ X

c

df!½Q �QðcÞ�ðz; mQ;�ÞhOH
½Q �QðcÞ�i;

DH=½Q �Qð�Þ�ðz; �; � 0; mQ;�Þ;
¼ X

c

d½Q �Qð�Þ�!½Q �QðcÞ�ðz; �; � 0; mQ;�ÞhOH
½Q �QðcÞ�i; (5)

where the functions d are calculable, � is a factorization
scale, and hOH

½Q �QðcÞ�i are local NRQCDmatrix elements [4].

Although we cannot provide a full proof for the NRQCD
factorization in Eq. (5), it is reasonable to evaluate the
coefficient functions in Eq. (5) to estimate the properties of
fragmentation functions [5].
We can use this formalism to help understand the source

of the surprisingly large corrections to J=c production in
the CSM at NLO and NNLO with predominantly longitu-
dinal polarization, in contrast to the small and transversely
polarized LO [14,15]. To do so, we use Eq. (1) to calculate
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NLP J=c cross sections at LO in �s from a color-singlet
3S1 pair. We estimate the Oð�sÞ fragmentation functions
from the diagrams in Fig. 3, where the upper lines are fixed
at p=2 and Dirac indices are contracted with an NRQCD
singlet projection with a matrix element essentially equiva-
lent to the CSM. At the order of �s, only the ½Q �Qða8Þ�
state fragments into a color-singlet 3S1 heavy quark pair,
while both the ½Q �Qðv8Þ� and ½Q �Qðt8Þ� states give vanish-
ing contributions due to charge conjugation symmetry
[10]. Defining rðzÞ 	 z2�2=½4m2

cð1� zÞ2�, we have
DL

½Q �Qða8Þ�!J=c
ðz; �; � 0; mQ;�Þ

¼ 1

2N2
c

hOJ=c
1ð3S

1
Þi

3mc

�ð�; � 0Þ �s

2�
zð1� zÞ

�
�
ln½rðzÞ þ 1� �

�
1� 1

1þ rðzÞ
��

;

DT
½Q �Qða8Þ�!J=c

ðz; �; � 0; mQ;�Þ

¼ 1

2N2
c

hOJ=c
1ð3S1Þ

i
3mc

�ð�; � 0Þ �s

2�
zð1� zÞ

�
1� 1

1þ rðzÞ
�
;

(6)

whereDL (DT) is the pair fragmentation function with the
pair longitudinally (transversely) polarized;

�ð�; � 0Þ ¼ 1

4

X
a;b

�ð� � að1� zÞÞ�ð� 0 � bð1� zÞÞ; (7)

with a; b ¼ �1; 1. The total unpolarized contribution is
D½Q �Qða8Þ�!J=c ¼ 2DT

½Q �Qða8Þ�!J=c
þDL

½Q �Qða8Þ�!J=c
. In de-

riving Eq. (6), we renormalized the UV divergence by a
cutoff� on transverse momenta. Quark masses make an IR
cutoff on transverse momenta unnecessary. Other renor-
malization schemes give similar results and will be dis-
cussed elsewhere [10]. We find the corresponding LO
short-distance hard parts to produce the ½Q �Qða8Þ� state,

Hq �q!½Q �Qða8Þ�g ¼ f1ð�; � 0ÞN
2
c � 1

Nc

2ðt̂2 þ û2Þ
ŝ3

; (8)

Hgq!½Q �Qða8Þ�q ¼ f1ð�; � 0Þ 2ðŝ
2 þ û2Þ
�t̂3

; (9)

Hgg!½Q �Qða8Þ�g ¼
8N2

c

N2
c � 1

t̂ û

ŝ3

�
t̂

û
þ 1þ û

t̂

��
f1ð�; � 0Þ

�
�
t̂

û
þ 1þ û

t̂

�
3 � f2ð�; � 0Þ 5ŝ

2

t̂ û

�
; (10)

where f1ð�; � 0Þ ¼ ½1þ �� 0 � 4
N2

c
�=½ð1� �2Þð1� � 02Þ�,

f2ð�; � 0Þ ¼ �� 0=½ð1� �2Þð1� � 02Þ�, and an overall factor
of ð4��3

s=ŝÞ�ðŝþ t̂þ ûÞ for the invariant cross section
Ed�AB!H=d

3p was suppressed [8]. The ŝ, t̂, and û are
the standard parton-level Mandelstam variables.
With both fragmentation functions and LO hard-

scattering functions, we can compute NLP cross sections
that can be compared to NLO CSM cross sections [7,15–
17]. Using the CTEQ6L parton distributions [18], � ¼ pT

for factorization and renormalization scales, mc ¼
1:5 GeV, and hOJ=c

1ð3S
1
Þi ¼ 1:32 GeV3, we calculate and

plot the unpolarized cross section as a function of pT in
Fig. 4 (upper panel). We see that the factorization-based
cross section shows much of the same enhancement above
the LO CSM as the full NLO result in CSM. Actually, our
calculated NLP cross section with the estimated Oð�sÞ
fragmentation functions reproduces as much as 80 percent
of the full NLO CSM result. The difference should be due
mainly to Oð�sÞ corrections to the hard-scattering func-
tions from the color-singlet ½Q �Qðv1Þ� channel. With
higher-order fragmentation functions from other ½Q �Qð�Þ�
states, the full NLP cross section at LO in �s could be
larger than the solid line in Fig. 4. Similarly, we calculate
the J=c polarization (lower panel), as measured by the
parameter � ¼ ð�T � �LÞ=ð�T þ �LÞ in terms of trans-
verse (longitudinal) cross section �T (�L). Our result is
consistent with that in Refs. [14,15]. We regard these
results as compelling evidence for the phenomenological
relevance of the power expansion.
Summary.—We have argued that a practical strategy for

the phenomenology of heavy quarkonium production at
high pT is to expand the cross sections first in the large-
scale pT and then in the coupling, �s, and have presented a
new pQCD factorization formalism for quarkonium pro-
duction, including the first nonleading powers in mQ=pT .
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FIG. 3. Leading-order Feynman diagrams representing the
fragmentation of a heavy quark pair to another heavy quark pair.
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This approach enables us to resum perturbative logarithms
into the fragmentation functions, to analyze systematically
the influence of the larger color-singlet matrix elements
despite their suppressed pT dependence, and to resolve
some of the mystery associated with the discovery of large
high-order corrections to color-singlet cross sections.
We have found that heavy quarkonia produced from
pair fragmentations are likely to be longitudinally polar-
ized, in contrast to single-parton fragmentation. The ob-
served quarkonium polarization should be a consequence
of the competition of these two leading production
channels.
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